Lecture 1: Introduction

Reference Textbooks

Modern Compiler Implementation in Java (Tiger book)
A.W. Appel

Cambridge University Press, 1998

ISBN 0-52158-388-8

A textbook tutorial on compiler
implementation, including
techniques for many language
features

Advanced Compiler Design and Implementation (Whale book)
Steven Muchnick

Morgan Kaufman Publishers, 1997

ISBN 1-55860-320-4

Essentially a recipe book of
optimizations; very complete and
suited for industrial practitioners
and researchers.

chniques and Tools (Drag
n

Each Segment...

Segment Start

— Project Description
Lectures

— 2 to 5 lectures
Project Time

— (Design Document)
— (Project Checkpoint)
Project Due

Staff

e Lecturer
— Prof. Martin Rinard rinard@mit.edu 258-6922 32-G828

e Rooms
- MWF 32-124 11:00 am
-TH 32-124 12:00 pm
¢ Course Secretary
— Mary McDavitt ~ mmcdavit@csail.mit.edu 32-G785 253-9620

¢ Teaching Assistants
— Chengyuan Ma (macy404@mit.edu)
— Youran (Yoland) Gao (youran@mit.edu)
— Shruti Siva (shrutsiv@mit.edu)
— Kosi Nwabueze (kosinw@mit.edu)
— Felix Prasanna (fpx@mit.edu)

The Project: The Five Segments

Lexical and Syntax Analysis
Semantic Analysis

Code Generation

Dataflow Analysis
Optimizations

Project Groups

Phase 1 is an individual project
Phases 2 to 5 are group projects
Each group consists of 3 to 4 students

Projects are designed to produce a compiler by the end
of class

Grading
— All group members (mostly) get the same grade
— Phase 1: Scanner/Parser
— Phase 2: IR and Semantic Checks
— Phase 3: x86 Code generator
— Phase 4: Dataflow Analysis
— Phase 5: Register Allocation + Optimizations
— 5 turn-ins total




Project Collaboration Policy

¢ Talk about anything you want with anybody
o Write all the code yourself

e Check with TAs before using specialized libraries

designed to support compiler construction

Mini Quizzes

Posted on Gradescope once every week

Can help you check your understanding of the
material

Collaboration of any kind is OK

This is in lieu of time consuming problem sets

More Course Stuff

Blank page project — all the rope you want!
Challenging project
You are on your own!

Project collaboration policy

— Talk all you want about project

— Write all of the your code yourself

Accepted Languages

- Java

— Scala

— Rust

— Typescript

— For other languages: talk to the TAs

Quizzes

e Two In Class Quizzes

¢ 50 minutes each

e Book/Open Book Status TBD
e Quiz collaboration policy:

—Do your quiz by yourself with no input
from anyone else during the quiz

Grading Breakdown

¢ Project = 75% of total grade

— Option A:
10% Phase 1/2, 25% Phase 3/4, 40% Phase 5 Final Submission

— Option B:
75% Phase 5 Final Submission
— We will take the maximum of option A or option B

e Quizzes = 20% total, 10% each
¢ Miniquizzes/Class participation = 5%

Why Study Compilers?

e Compilers enable programming at a high level
language instead of machine instructions.

— Malleability, Portability, Modularity, Simplicity,
Programmer Productivity

— Also Efficiency and Performance
¢ Indispensible programmer productivity tool
¢ One of most complex software systems to build




Compilers Construction touches
many topics in Computer Science

Theory

— Finite State Automata, Grammars and Parsing, data-flow
Algorithms

— Graph manipulation, dynamic programming

Data structures

— Symbol tables, abstract syntax trees
Systems

— Allocation and naming, multi-pass systems, compiler construction
Computer Architecture

— Memory hierarchy, instruction selection, interlocks and latencies, parallelism
Security

— Detection of and Protection against vulnerabilities
Software Engineering

— Software development environments, debugging
Artificial Intelligence

— Heuristic based search for best optimizations

Input to the Compiler

e Standard imperative language (Java, C, C++)

— State
¢ Variables,
o Structures,
o Arrays
— Computation
e Expressions (arithmetic, logical, etc.)
¢ Assignment statements
o Control flow (conditionals, loops)
¢ Procedures

Example (input program)

int sumcalc(int a, int b, int N)

{

int i, x, y;
x =0;
y =0;
for(i = 0; 1 <= N; i++) {
+ (4*a/b)*i + (i+1)*(i+1);

return x;

What a Compiler Does

e Input: High-level programming language
e Output: Low-level assembly instructions

e Compiler does the translation:
— Read and understand the program
— Precisely determine what actions it requires
— Figure-out how to faithfully carry out those actions
— Instruct the computer to carry out those actions

Output of the Compiler

e State
— Registers
— Memory with Flat Address Space

e Machine code — load/store architecture
— Load, store instructions
— Arithmetic, logical operations on registers
— Branch instructions

Example (Output assembly code)

sumcal, .siz .-sumcalc




Optimization Example

int sumcalc(int a, int b, int N)
{
int i;
int x, y;
x =0;
y =0;
for(i = 0; 1 <= N; i++) {
x = x + (4*a/b)*i + (i+l)*(i+l);
X = x + b*y;
}

return x;

Lets Optimize...

int sumcalc(int a, int b, int N)

{

i <= N; i++) {
x = x + (4*a/b)*i + (i+l)*(i+l);
X = x + b*y;
}

return x;

Constant Propagation

int i, x, y;

x =0;
= 0; 1 <= N; i++) {
+ (4*a/b)*i + (i+1l)*(i+1);

+ b*y;

return x;

Constant Propagation

i, x, y;
x =0;
y = 0;
for(i = 0; i <= N; i++) {
X = x + (4%a/b)*i + (i+1)*(i+1);
x x + b*y;
}

return x;

Constant Propagation

i, x, y;
0;
= 0; i <= N; i++) {
+ (4*a/b)*i + (i+1)*(i+l);
+ b*0;

return x;




Algebraic Simplification Algebraic Simplification

int i, x, y; int i, x, y;
x =0; == 0g
y = 0; y =0;
for(i = 0; i <= N; i++) { =ROFR =R NERRI ) B

= x + (4*a/b)*i + (i+l)*(i+l); + (4*a/b)*i + (i+1)*(i+1);

= x + b*0; + b*0;

return x; return x;

Algebraic Simplification Copy Propagation

int i, x, y; int i, x, y;

x=0; x =0;
y = 0; y =0;
for(i = 0; i <= N; i++) { =0; i <= N; i++) {
X = x + (4*a/b)*i + (i+1)*(i+1); + (4*a/b)*i + (i+l)*(i+l);
= x: :
}

return x; return x;

Copy Propagation Copy Propagation

int i, x, y; int i, x, y;

x =0; == g

y = 0; y =0;

for(i = 0; i <= N; i++) { for(i = 0; i <= N; i++) {
X = x + (4*a/b)*i + (i+1)*(i+1); X = x + (4*a/b)*i + (i+l)*(i+l);
X = X;

} }

return x; return x;




Common Subexpression Elimination Common Subexpression Elimination

int i, x, y; int i, x, y;
x =0; x = 0;
y=0,' y:O;
for(i = 0; i <= N; i++) { for(i = 0; 1 <= N; i++) {
X = x + (4*a/b)*i + (i+1l)*(i+l); X = x + (4*a/b)*i + (i+1)*(i+1);
} }

return x; return x;

Common Subexpression Elimination Dead Code Elimination

int i, x, y, t; int i, x, y, t;
x =0; == g
y = 0; y = 0;
for(i = 0; i <= N; i++) { for(i = 0; i <= N; i++) {
t = i+1; t = i+1;
x = x + (4*a/b)*i + t*t; x = x + (4*a/b)*i + t*t;
} }

return x; return x;

Dead Code Elimination Dead Code Elimination

int i, x, y, t; int i, x, t;
x =0; x =0;
y =0;
for(i = 0; i <= N; i++) { for(i = 0; i <= N; i++) {
t = i+1; t = i+1;
x = x + (4*a/b)*i + t*t; x = x + (4*a/b)*i + t*t;
} }

return x; return x;




Loop Invariant Code Removal

int i, x, t;

x =0;
for(i = 0; i <= N; i++) {
= i+l;
x + (4*a/b)*i + t*t;

return x;

Loop Invariant Code Removal

int i, x, t, u;

x =0;

u = (4*a/b);

for(i = 0; i <= N; i++) {
= i+l1;
= x + u*i + t*t;

}

return x;

Strength Reduction

i, x, t, u;
= (g
= (4*a/b);

for(i = 0; i <= N; i++) {
t = i+1;
= x + u*i + t*t;

}

return x;

Loop Invariant Code Removal

int i, x, t;

== g

for(i = 0; 1 <= N; i++) {
= i+l1;
= x + (4*a/b)*i + t*t;

return x;

Strength Reduction

int i, x, t, u;
XE=NOF
u = (4*a/b);

for(i = 0; i <= N; i++) {
= i+l1;
X + u*i + t*t;

return

Strength Reduction

int i, x, t, u, v;
0;

((a<<2) /b) ;
0;

ssere(sl B8 0 & B W k) {

t i+l;

X X + v + t*t;

v

v + u;

X,




Register Allocation Register Allocation

fp
ocal variable
Localvesihle ¥
ocal variable

Unoptimized Code Optimized Code
Optimized Example s N

int sumcalc(int a, int b, int N)
{

shy By By By T8

0;

((a<<2) /b) ;

0:
(i
e}
X
v

By Il

in
x
u
v
fo

0; i <= N; i++) {
i+l;

X + v + t*t;

v + u;

}

return x;

Execution time = 43 sec Execution time = 17 sec

Compilers Optimize Programs for...

Performance/Speed
Code Size

Power Consumption
Fast/Efficient Compilation
Security/Reliability
Debugging




