Register Allocation

Storing values between def and use

* Program computes with values
— value definitions (where computed)
— value uses (where read to compute new values)

» Values must be stored between def and use
— First Option
+ store each value in memory at definition
* retrieve from memory at each use
— Second Option
« store each value in register at definition
* retrieve value from register at each use

What can be put in a register?

» Values stored in compiler-generated temps

* Language-level values
— Values stored in local scalar variables
— Big constants

— Values stored in array elements and object fields
* Issue: alias analysis

» Register set depends on the data-type
— floating-point values in floating point registers
— integer and pointer values in integer registers

Outline

What is register allocation
Webs

Interference Graphs
Graph coloring

Spilling
Splitting
More optimizations

Register Allocation

Deciding which values to store in limited
number of registers

Register allocation has a direct impact on
performance

— Affects almost every statement of the program
— Eliminates expensive memory instructions

— # of instructions goes down due to direct
manipulation of registers
* Limited mem-to-mem ALU ops, may need two instructions

— Probably is the optimization with the most impact!

Issues

» Fewer instructions when using registers
— Additional instructions when using memory accesses

» Registers are faster than memory
— wider gap in faster, newer processors
— Factor of about 4 bandwidth, factor of about 3 latency
— Could be bigger if program characteristics were different

* But only a small number of registers available
— Usually 16 integer and 16 floating-point registers
— Some of those registers have fixed users (ex: RSP, RBP)

Outline Summary of Register Allocation

What is register allocation

Key ideas in register allocation

Webs * Key ldeas: _ .
— When a temporary goes dead, its register can be reused

— Two live temporaries can’t use the same register at the same time

* You want to put each temporary in a register
— But, you don’t have enough registers.

Interference Graphs
Graph coloring
Splitting

More optimizations

Summary of Register Allocation Summary of Register Allocation

* When a temporary goes dead, its register can be reused Two live temporaries can’t use the same register at the

* Example: same time

=c+d

=atb Example 2:

-1 a:=c+d
(assume that a and e die after use) e=a+b

» temporaries a, e and f can go in the same register fi=e-a

a
e
f:

C
a
e

rM:=c+d
rM:=rl+b
r:=r1-1

When things don’t work out

» Sometimes more live variables than registers
a:=c+d
e=c+b
fi=e-c ——lf _
I
[
|

2 registers

gi=e+f
h:=a+g

]
(assume only g and h live at the end)

* You can split a live range by storing to memory

a:=c+d
store a

e=c+b S
g=e+f —

load a
h;:a+gJ7

Won’t work for

temporaries e and a can not go in the same register
rM:=c+d
r2:=r+b
r1:=r2-r1

Web-Based Register Allocation

Determine live ranges for each value (web)
Determine overlapping ranges (interference)
Compute the benefit of keeping each web in a
register (spill cost)

Decide which webs get a register (allocation)
Split webs if needed (spilling and splitting)
Assign hard registers to webs (assignment)
Generate code including spills (code gen)

Outline

What is register allocation

Key ideas in register allocation
Webs

Interference Graphs

Graph coloring

Splitting

More optimizations

Example

use X use X
use y def x

use x

Example

use X use X
usey def x

use x

Webs

» Starting Point: def-use chains (DU chains)
— Connects definition to all reachable uses

» Conditions for putting defs and uses into same
web
— Def and all reachable uses must be in same web
— All defs that reach same use must be in same web

* Use a union-find algorithm

Example

use X use X
use y def x

use x

Example

use x use x
usey def x

use x

Example Example

use X use X use X use X
use 'y def x use 'y def x

use x use x

Example Example

def x def x
defy use y

s3
use X use X use X
use y def x use y

use x

Webs Outline

Web is unit of register allocation What is register allocation

Webs

Interference Graphs
Graph coloring
Splitting

More optimizations

If web allocated to a given register R
— All definitions computed into R
— All uses read from R

If web allocated to a memory location M
— All definitions computed into M
— All uses read from M

Convex Sets and Live Ranges Interference

» Concept of convex set)) o
» Two webs interfere if their live ranges overlap
. AsetSis convex if (have a nonemtpy intersection)

— A, Bin S and C is on a path from A to B implies . .
_Cisins + If two webs interfere, values must be stored in
different registers or memory locations

» Concept of live range of a web

. . . . |If two webs do not interfere, can store values in
— Minimal convex set of instructions that includes all defs : .
e same register or memory location

— Intuitively, region in which web’s value is live

Example Example

def x def x def x
defy use y \usey)

s3

use X
use y

Example Interference Graph
Webs s1 and s2 interfere . _
Webs s2 and s3 interfere @@ sl » Representation of webs and their interference
— Nodes are the webs
— An edge exists between two nodes if they interfere

def x def x Y
def y \use y,

—=)

Example Example

Webs s1 and s2 interfere

@@ sl Webs s2 and s3 interfere @@ s1

def x def x def x
use y ([def y) \use y

s3
use X @ @ use X
def x
S:

def x

@)
S ENORNC wel)

Register Allocation Using
Graph Coloring

Overview of procedure optimizations « Each web is allocated a register
What is register allocation — each node gets a register (color)

A simple register allocator * |If two webs interfere they cannot use the same

Webs reglster
— if two nodes have an edge between them, they cannot
Interference Graphs

have the same color
Graph coloring

Splitti
lerelrc])?)timizations @ @
©

Outline

Graph Coloring Graph Coloring Example

O O

Assign a color to each node in graph

Two nodes connected to same edge must have
different colors

Classic problem in graph theory Q Q

NP complete
— But good heuristics exist for register allocation

Graph Coloring Example

* 1 Color

Graph Coloring Example

e 2 Colors

Graph Coloring Example

e Still 2 Colors

Graph Coloring Example

O O
O O

Graph Coloring Example

O O
O O

Graph Coloring Example

O—0
O—0O

Graph Coloring Example

® O
® O

¢ 3 Colors

Heuristics for Register Coloring

* Remove nodes that have degree <N
— push the removed nodes onto a stack

* When all the nodes have degree >= N
— Find a node to spill (no color for that node)
— Remove that node

* When empty, start to color
— pop a node from stack back

— Assign it a color that is different from its connected
nodes (since degree < N, a color should exist)

Coloring Example
N=3

Heuristics for Register Coloring

Coloring a graph with N colors

If degree < N (degree of a node = # of edges)
— Node can always be colored

— After coloring the rest of the nodes, you’ll have at least
one color left to color the current node

If degree >= N
— still may be colorable with N colors

Coloring Example
N=3

Coloring Example
N=3

Coloring Example
N=3

Coloring Example
N=3

Coloring Example

n=3 [/

Coloring Example
N=3

Coloring Example

n=3 [/

Coloring Example

n=3 [/

Coloring Example

n=3 [/

@

Coloring Example

n=3 [/

Coloring Example

n=3 [/

@O— @
@

Coloring Example

n=3 [/

Coloring Example

n=3 LIE[T]
@—»

@

Coloring Example

n=3 [/

Coloring Example

n=3 [/

Another Coloring Example
N=3

Another Coloring Example
N=3

Another Coloring Example
N=3

Another Coloring Example
N=3

Another Coloring Example
N=3

Another Coloring Example

n=3 [/

Another Coloring Example

n=3 [/

Another Coloring Example

n=3 [/

Another Coloring Example

n=3 [/

Another Coloring Example

n=3 [/

Another Coloring Example

n=3 [/

Another Coloring Example Another Coloring Example

n=3 [/ n=3 [/

What Now? Which web to pick?

» Option 1 * One with interference degree >= N
— Pick a web and allocate value in memory « One with minimal spill cost (cost of placing value
— All defs go to memory, all uses come from memory in memory rather than in register)

* Option 2 * What is spill cost?
— Split the web into multiple webs — Cost of extra load and store instructions

* In either case, will retry the coloring

|ldeal and Useful Spill Costs One Way to Compute Spill Cost

+ |deal spill cost - dynamic cost of extra load and Goal: give priority to values used in loops

store instructions. Can’t expect to compute this. So assume loops execute 10 or 100 times
— Don’t know which way branches resolve Spill cost =

— LS bR S TET TES | G2/pS ErEeis — sum over all def sites of cost of a store instruction
— Actual cost may be different for different executions times 10 to the loop nesting depth power, plus

» Solution: Use a static approximation — sum over all use sites of cost of a load instruction times
— profiling can give instruction execution frequencies 10 to the loop nesting depth power

— or use heuristics based on structure of control flow Choose the web with the lowest spill cost
graph

Spill Cost

Example

Spill Cost For x

storeCost+loadCost

Spill Cost For y

9*storeCost+9*loadCost

With 1 Register, Which
Variable Gets Spilled?

Splitting Rather Than Spilling

» Split the web

— Split a web into multiple webs so that there will be less
interference in the interference graph making it N-

colorable

— Spill the value to memory and load it back at the points

where the web is split

Splitting Example

defz
use z

def'x
defy
use X
use X

usey

use z

Xyz

Outline

Overview of procedure optimizations
What is register allocation

A simple register allocator

Webs

Interference Graphs

Graph coloring

Splitting

More optimizations

X

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

Splitting Example

Xyz

defz
use z

def'x
defy
use X
use X
usey

use z

2 colorable?

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

2 colorable?
NO!

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

2 colorable?

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

Splitting Example

defz
use z

def'x
defy
use X
use X
usey

use z

X

Y|

z

2 colorable?
YES!

Splitting Example
def z XY[Z|

use z

rl

def x
def'y
use X
use X
use 'y

use z

2 colorable?
YES!

Splitting Heuristic

* |ldentify a program point where the graph is not R-
colorable (point where # of webs > N)

— Pick a web that is not used for the largest enclosing
block around that point of the program

— Split that web at the corresponding edge
— Redo the interference graph
— Try to re-color the graph

Outline

Overview of procedure optimizations
What is register allocation

A simple register allocator

Webs

Interference Graphs

Graph coloring

Splitting

More optimizations

Splitting Example
defz Xy z

rl

def x
def'y
use X
use X
use y

Id z
use z 2 colorable?
YES!

Cost and benefit of splitting

» Cost of splitting a node

— Proportional to number of times splitted edge has to be
crossed dynamically

— Estimate by its loop nesting
» Benefit

— Increase colorability of the nodes the splitted web
interferes with

— Can approximate by its degree in the interference graph
» Greedy heuristic

— pick the live-range with the highest benefit-to-cost ration to
Sl

Further Optimizations

Register coalescing

Register targeting (pre-coloring)
Presplitting of webs
Interprocedural register allocation

Register Coalescing

Find register copy instructions sj = si
If sj and si do not interfere, combine their webs

Pros
— similar to copy propagation
— reduce the number of instructions

Cons
— may increase the degree of the combined node
— a colorable graph may become non-colorable

Pre-splitting of the webs

» Some live ranges have very large “dead” regions.

— Large region where the variable is unused

» Break up the live ranges
— need to pay a small cost in spilling
— but the graph will be very easy to color

» Can find strategic locations to break-up
— at a call site (need to spill anyway)

— around a large loop nest (reserve registers for values
used in the loop)

Summary

* Register Allocation
— Store values in registers between def and use
— Can improve performance substantially

» Key concepts
— Webs
— Interference graphs
— Colorability
— Splitting

Register Targeting (pre-coloring)

» Some variables need to be in special registers at

a given time
— fist 6 arguments to a function
— return value

* Pre-color those webs and bind them to the right

register

» Will eliminate unnecessary copy instructions

Interprocedural register
allocation

saving registers across procedure boundaries is
expensive
— especially for programs with many small functions

Calling convention is too general and inefficient

Customize calling convention per function by
doing interprocedural register allocation

