Outline

Why Parallelism

Parallel Execution

Parallelizing Compilers

Parallelization
Dependence Analysis

Increasing Parallelization Opportunities

Moore’s Law Uniprocessor Performance (SPECint)

i 1,000,000,000 100000
Itanium 2

. A,
Itanium C
100,000,000

10,000,000

1,000,000

SIOJSISUB] JO JaquInN
Performance (vs. VAX-11/780)

100,000

10,000
19841986 1988 1990 1992 1994 1996 1998 2000 20022004 2006 2008 201020122014 2016

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Multicores Are Here! Issues with Parallelism

e Amdhal’s Law

— Any computation can be analyzed in terms of a portion that
Picochip Ambric must be executed sequentially, Ts, and a portion that can be
P10z A% Amz045 executed in parallel, Tp. Then for n processors:

— T(n) =Ts + Tp/n
Triops — T() = Ts, thus maximum speedup (Ts + Tp) /Ts

Raza Cavium ¢ Load Balancing

XLR Octeon

A A — The work is distributed among processors so that a// processors
e AGT are kept busy when parallel task is executed.

Opteron 4P
ADA Xeon MP

Boardcom 1480
Xbox360

PASIIL Optartn Tanglowoo e Granularity

Ponalf 2" — The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication
(overhead).

werd A
PExtreme _Power6
Yonah

1970 1975 1980 1985 1990 1995 2000 2005 20?7

Outline

Parallel Execution
Parallelizing Compilers
Dependence Analysis

Increasing Parallelization Opportunities

Why Loops?

¢ 90% of the execution time in 10% of the code
— Mostly in loops

o If parallel, can get good performance
— Load balancing

¢ Relatively easy to analyze

Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

¢ Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+l)*Iters, N)
A[I] = A[I] + 1

e SPMD (Single Program, Multiple Data) Code

If (myPid == 0) {

Iters = ceiling (N/NUMPROC) ;

}

Barrier() ;

FOR I = myPid*Iters to MIN((myPid+l)*Iters, N)
A[I] = A[I] + 1

Barrier() ;

Types of Parallelism

Instruction Level)
Parallelism (ILP) - Scheduling and Hardware

Task Level Parallelism - Mainly by hand
(TLP)

Loop Level Parallelism .
(LLP) or Data Parallelism - Hand or Compiler Generated

Pipeline Parallelism - Hardware or Streaming

Divide and Conquer - Recursive functions
Parallelism

Programmer Defined Parallel Loop

e FORALL e FORACROSS

— No “loop carried — Some “loop carried
dependences” dependences”

— Fully parallel

|
L

Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

¢ Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e Code fork a function
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC - 1 { ParallelExecute(funcl, P); }
BARRIER (NUMPROC) ;
void funcl (integer myPid)
{
FOR I = myPid*Iters to MIN((myPid+l)*Iters, N)
A[I] = A[I] + 1
}

Parallel Thread Basics

¢ Create separate threads

— Create an OS thread

e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)
— Overhead in thread creation

o Create a separate stack

¢ Get the OS to allocate a thread

e Thread pool

— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done

Parallelizing Compilers

¢ Finding FORALL Loops out of FOR loops

e Examples
FOR I =0 to 5
A[I] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+6] + 1

For I =0 to 5
A[2*I] = A[2*I + 1] + 1

Iteration Space

e N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I =0 to 6
FOR J =1I to 7

* Iterations are represented as coordinates in iteration space
e Sequential execution order of iterations = Lexicographic order
(0,01, [0,1], [0,2], ..., [0,6], [0,7],
(1,13, [1,2], .., [1,6], [L,7],
[2,2], .., [2,6], [2,7],

[6,6], [6,7],

Outline

 Parallelizing Compilers
e Dependence Analysis

e Increasing Parallelization Opportunities

Iteration Space

e N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I =0 to 6
FOR J =1I to 7

« Iterations are represented as coordinates in iteration space
= T=[iy, i i3,y in]

Iteration Space

e N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I =0 to 6
FOR J =1I to 7

Iterations are represented as coordinates in iteration space
Sequential execution order of iterations = Lexicographic order

IterationT is lexicograpically less than7,T< 7 iff
there exists c s.t. iy = jy, iy = Jp,.. i1 = jer @Nd ¢ < jc

Iteration Space

e N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I =0 to 6
FOR J =1I to 7

¢ An affine loop nest
— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes
— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes

Data Space

¢ M dimensional arrays > M-dimensional discrete cartesian space
— a hypercube

Integer A(10) 012 345 67289

Float B(5, 6)

Outline

e Dependence Analysis

e Increasing Parallelization Opportunities

Iteration Space

e N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I =0 to 6
FOR J =1 to 7

« Affine loop nest - Iteration space as a set of linear inequalities
0<I
I1<6
I1<]
1<7

Dependences

True dependence
a =
a

Anti dependence
a
a

Output dependence
a =
a
Definition:
Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?

Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I] + 1

Iteration Space Data Space

012 345 012 345 6 7 8 9101112
-—s——s—s—s—0—a—8—0—0—a

o—0—0—0—0—0

Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I] + 1

O= 0= 0= 000

Iteration Space Data Space
012 345 0] 1128 3§43 5 §6] 7 §8) 9 [0/1112
o—0—0—0—0—0

Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I+2] + 1

Iteration Space Data Space
0} 128 3 Bl 5 0] 1 28 3 K3 S5 g6l 7 g8l 9 1112
o—0—10—10—"0—1° ob—s————a—0—0—0—a—0—a—

Distance Vectors

¢ A loop has a distance d if there exist a data
dependence from iteration i to j and

FOR I =0 to 5
dv=[0] A[I] = A[I] + 1

FORI =0 to 5
A[I+1] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+2] + 1

FORI =0 to 5
A[I] = A[0] + 1

Array Accesses in a loop

FOR I =0 to 5
A[I+1] = A[I] + 1

Iteration Space Data Space
012 345 0] 1128 3§43 5 §6] 7 §8) 9 [0/1112
o—0—0—0—0—0

Array Accesses in a loop

FOR I =0 to 5
A[2*I] = A[2*I+1] + 1

Iteration Space Data Space
0} 128 3 Bl 5 0] 1 28 3 K3 S5 g6l 7 g8l 9 1112
o—0—"0—10—0—10 ob—s————a—0—0—0—a—0—a—

= A[2*1+1]
A[2*] O
= A[2*1+1]
A[2*T]

= A[2*1+1]
A[2*1]

= A[2*1+1]
A[2*1]

= A[2*I+1]
A[2*1]

= A[2*I+1]
A[2*1]

Multi-Dimensional Dependence

FORI =1 ton > J
FOR J =1 ton l
A[I, J] = A[I, J-1] + 1
I

Z8

Multi-Dimensional Dependence

FORI =1 ton >J
FOR J =1 ton l

A[I, J] = A[I, J-1] + 1

z8

FOR I =1 ton
FOR J =1 ton
A[I, J] = A[I+l, J] + 1

1
dv =

What is the Dependence?

FOR I =1 ton
FOR J =1 ton
A[I, J] = A[I-1, J+1] + 1

What is the Dependence?

FORI =1 ton —]
FOR J =1 ton
A[I, J] = A[I-1, J+1] + 1

z0

Outline

e Dependence Analysis
¢ Increasing Parallelization Opportunities

What is the Dependence?

FOR I =1 ton
FOR J =1 ton e
A[I, J] = A[I-1, J+1] +1 /

What is the Dependence?

FORI =1 ton —]
FOR J =1 ton
A[I, J] = A[I-1, J+1] + 1

FORI =1 ton
FOR J =1 ton
B[I] = B[I-1] + 1

What is the Dependence? What is the Dependence?

FORI =1 ton —]
FOR J =1 ton
A[I, J] = A[I-1, J+1] + 1

FOR i = 1 to N-1
FOR j = 1 to N-1
I A[i,j] = A[i,j-1] + A[i-1,3];

to n
1l ton
B[I-1] + 1

Recognizing FORALL Loops Data Dependence Analysis

e Find data dependences in loop ¢ I: Distance Vector method

— For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) o II: Integer PrOg ramming
in which it refers to a location in the array that the second access

also refers to in at least one of the later dynamic instances
(iterations).

Then there is a data dependence between the statements
— (Note that same array can refer to itself — output dependences)

o Definition
— Loop-carried dependence:
dependence that crosses a loop boundary

o If there are no loop carried dependences - parallelizable

Distance Vector Method Is the Loop Parallelizable?

* The i*" loop is parallelizable for all Yes RIS oS
dependence d = [d,...,d;,..d,]
either
one of dy,...,d;.;is > 0 - FOR I =0 to 5

A[I+1] = A[I] + 1
or

alld,,...,d =0
FOR I = 0 to 5
A[I] = A[I+2] + 1

FORI =0 to 5
A[I] = A[0] + 1

Are the Loops Parallelizable? Are the Loops Parallelizable?

— FORI =1 ton —]

FOR J =1 ton
J] = A[I-1, J+1] + 1

FOR I =1 ton
FOR J =1 ton

A[I, J] = A[I, J-1] + 1 l
I I

1 No
Yes =
No 1 Yes

FOR I =1 ton 1 ton

FOR J =1 ton =1¢ton
= B[I-1] + 1

A[I, J] = A[I+1, J] + 1 =
No

No
Yes

Yes

Integer Programming Method Integer Programming Method

FOR I = 0 to 5
Example . A[I+1] = A[I] + 1
FOR I = 0 to 5 ¢ Formulation

A[I+1] = A[I] + 1 . _ ry——
— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

Is there a loop-carried dependence between A[I+1] and A[I]

— Are there two distinct iterations i,, and i, such that A[i,+1] is the
same location as A[i,]
— 3Jintegers iy, i 0<iyi<5 iy=i i, +1=1i

¢ Is there a dependence between A[I+1] and A[I+1]
— Are there two distinct iterations i; and i, such that A[i;+1] is the
same location as A[i,+1]
— Jintegers iy, i, 0<i;, i, <5 iy#i, i+1l=i+1

Iteration Space Integer Programming Method

FOR I =0 to 5
A[I+1] = A[I] + 1

FOR I = 0 to 5
A[I+1] = A[I] + 1 . -
[]
N deep loops = n-dimensional ormuiation

discrete cartesian space — 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]

— Jintegersiy, ir 0=, i, <5 i,# i i\t 1= i

— iy # I is not an affine function

 divide into 2 problems

0<1I e Problem 1 with i, < i, and problem 2 with i, < i,

I1<6 o If either problem has a solution - there exists a dependence
I<J] — How about i, + 1 = i

I=7 « Add two inequalities to single problem
it 1<i,andi < i,+1

12 345
Affine loop nest > Iteration 99

space as a set of linear
inequalities

Integer Programming Formulation Integer Programming Formulation

FOR I =0 to 5 FOR I =0 to 5

e Problem 1 A[I+1] = A[I] + 1 e Problem 1 A[I+1] = A[I] + 1
0<i, 0<i, G, <0
i, <5 i, <5 i, <5
0<i 0<i -i,<0
<5 i<5 i<5
iW< ir iw< ir
iwt 1< iwt1<i [
i< i1 i< i1 Ay +

i< -1
<-1
i

<1

Integer Programming Formulation Generalization

¢ An affine loop nest

FOR i; = f;;(c;..cy) to I, (cj..cy)

e Problem 1

0<i,
iy <5
0<i
i <5
i < iy
i+ 1<i
i< i1

[y <0
iy <5
-, <0
i <5
il
i < -1
[y i <1

e Solve 2*n problems of the form

iy = Ji, iz = Joseee

FOR i, = £,,(i;,c5..¢¢) to I, (i;,ci..cy)

FOR i, = £, (i;..i,3,¢c5..¢) to I, (i;.i,;,¢c5..¢)

Alf.(iy.4,,61..6k) , £a2(i1.i4,C1..Cx) /oy Eam (i1, C10k)]

a-1 = Jn-1s in < Ja
* i1 = 31, iz = 32 a1 = Jn-1r Ja < in

1, 1
i 1
* i1 = J1, 12 = Jzsee in1 < Jna
B 1

* i1 = J1, 12 = J2seen Jno1 < dn-

q a a * i1 =31, 12< 32

e and problem 2 with i, < i, Ch= 3 <
s i <3y
*Ji < iy

Increasing Parallelization

Outline Opportunities

e Scalar Privatization

e Reduction Recognition

¢ Induction Variable Identification
¢ Array Privatization

¢ Loop Transformations

¢ Granularity of Parallelism

e Interprocedural Parallelization

¢ Increasing Parallelization Opportunities

Scalar Privatization Privatization

e Example e Analysis:
TR A S 5 oo m — Any anti- and output- loop-carried dependences

X = A[i] * 3;
B[i] = X; ¢ Eliminate by assigning in local context
FOR i =1 ton
integer Xtmp;

e Is there a loop carried dependence? i Y
e What is the type of dependence? Bl = Xemes
¢ Eliminate by expanding into an array

FOR i =1 ton
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

Privatization Another Example

¢ Need a final assignment to maintain the correct _ ;
V1 ST e [25 How about loop-carried true
dependences?
e Eliminate by assigning in local context e Example

FOR i =1 ton
integer Xtmp; FOR i =1 ton
ED S B F 85 X = X + A[i];
B[i] = Xtmp;
if(i == n) X = Xtmp

. . e Is this loop parallelizable?
¢ Eliminate by expanding into an array
FOR i =1 ton
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];
X = Xtmp([n];

Reduction Recognition Induction Variables

e Reduction Analysis: Example
— Only associative operations FOR i = 0 to N
— The result is never used within the loop Ald] = 2%4;
After strength reduction
t=1
FOR i = 0 to N
A[i] = t;

e Transformation
Integer Xtmp[NUMPROC] ;
Barrier() ;

FOR i = myPid*Iters to MIN((myPid+1l)*Iters, n) t = t*2;

Xtmp [myPid] = Xtmp[myPid] + A[i]; What happened to loop carried dependences?

Barrier() ;

I£ (myPid == 0) { Need to do opposite of this!
FOR p = 0 to NUMPROC-1 A g . q
X = X + Xtmp[p] ; — Perform induction variable analysis
— Rewrite IVs as a function of the loop variable

Array Privatization Loop Transformations

e A loop may not be parallel as is
e Example

e However, analysis is more complex FOR i =1 to N-1
FOR j = 1 to N-1

— Array Data Dependence Analysis: Ali,j] = A[4,5-1] + A[i-1,3];
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

—_—

o Similar to scalar privatization

¢ Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension

Loop Transformations Granularity of Parallelism

« A loop may not be parallel as is l :
» Example 1¢

FOR i = 1 to N-1
FOR j = 1 to N-1
Ali,3j] = A[i,3-1]1 + A[i-1,3]; ¢ Gets transformed into
FOR i = 1 to N-1
Barrier() ;
FOR j = 1+ myPid*Iters to MIN((myPid+l)*Iters, n-1)
Al[i,j] = A[i,]] + A[i-1,3];
Barrier() ;

Ly 1 1|4,
() : = ; . .
Aﬁ:er loop Sk*ewmg Lm} [0 1}[1 e Inner loop parallelism can be expensive
FOR 1 = l_to 2*N-3 . L. — Startup and teardown overhead of parallel regions
FORPAR j = max(1l,i-N+2) to min(i, N-1) — Lot of synchronization
Al1-3+1,3] = Al[i-3+1,3-1] + Ali-3.31/ — Can even lead to slowdowns

e Example —]
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,3] = A[4,3] + A[i-1,3];

0—0—0—0—0—0

Granularity of Parallelism Outer Loop Parallelism

* Inner loop parallelism can be expensive * Bample

FOR j = 1 to N-1
A[i,j] = A[i,3] + A[i-1,3];

¢ Solutions o After Loop Transpose
FOR j = 1 to N-1

— Don't parallelize if the amount of work within FOR i = 1 to N-1
the loop is too small Ali,3] = Ali,3] + Ali-1,31;

or o Get mapped into

Barrier() ;

- TranSform Into OUter_Ioop para”ellsm FOR j = 1+ myPid*Iters to MIN((myPid+l)*Iters, n-1)
FOR i = 1 to N-1
A[i,j] = A[i,]] + A[i-1,3];
Barrier() ;

Unimodular Transformations Legality of Transformations

¢ Unimodular transformation with matrix A is valid iff.
* Interchange, reverse and skew For all dependence vectors v

e Use a matrix transformation the first non-zero in Av is positive
Inew =A Iold * E;(impzlel - 1] Jo] [t oo
=it #4110

FOR j = 1 to N-1 o [1] ~ [o 1
A[i,j] = A[i,3] + A[i-1,3];

e Interchange

e Interchange A=[? (ﬂ [(1) (1,}[(1, (1)‘

veese [(AR

e Skew e ' . Skew

Interprocedural Parallelization Interprocedural Parallelization

» Function calls will make a loop unparallelizatble * Iss;es cuncti ’ _
— Reduction of available parallelism = SAlE e den Fassdl (e Linss . .
P — Analyze a function on each trace - Possibly exponential

— Alot of inner-loop parallelism — Analyze a function once - unrealizable path problem

e Solutions e Interprocedural Analysis

— Interprocedural Analysis — Need to update all the analysis
— Complex analysis

— Inlining — Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat - can be very expensive

Summary

HashSet h; e Multicores are here
fori=1ton — Need parallellsm. to keep the Performance gains .
. . — Programmer defined or compiler extracted parallelism
int v = compute(i);
h.insert(i); . N .
(7 o Automatic parallelization of loops with arrays
))) — Requires Data Dependence Analysis
Are iterations independent? — Iteration space & data space abstraction
Can you still execute the loop in parallel? — An integer programming problem
Do all parallel executions give same result?
e Many optimizations that'll increase parallelism

