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Uniprocessor Performance (SPECint)
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Multicores Are Herel!
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Issues with Parallelism

e Amdhal’s Law
— Any computation can be analyzed in terms of a portion that
must be executed sequentially, Ts, and a portion that can be
executed in parallel, Tp. Then for n processors:
— T(n) = Ts + Tp/n
— T(w0) = Ts, thus maximum speedup (Ts + Tp) /Ts

e Load Balancing
— The work is distributed among processors so that a/f processors
are kept busy when parallel task is executed.

e Granularity

— The size of the parallel regions between synchronizations or
the ratio of computation (useful work) to communication

(overhead).
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Types of Parallelism

Instruction Level
Parallelism (ILP)

Task Level Parallelism
(TLP)

- Scheduling and Hardware

- Mainly by hand

Loop Level Parallelism
(LLP) or Data Parallelism

- Hand or Compiler Generated

Pipeline Parallelism

Divide and Conquer
Parallelism

- Hardware or Streaming

—> Recursive functions




Why Loops?

e 90% of the execution time in 10% of the code
— Mostly in loops

e If parallel, can get good performance
— Load balancing

e Relatively easy to analyze



Programmer Defined Parallel Loop

e FORALL e FORACROSS
— No “loop carried — Some “loop carried
dependences” dependences”
— Fully parallel

1
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Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into
Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)
A[I] = A[I] + 1

e SPMD (Single Program, Multiple Data) Code

If (myPid == 0) {

Iters = ceiling (N/NUMPROC) ;

}

Barrier () ;

FOR I = myPid*Iters to MIN( (myPid+1l) *Iters, N)
A[I] = A[I] + 1

Barrier () ;




Parallel Execution

e Example
FORPAR I = 0 to N
A[I] = A[I] + 1

e Block Distribution: Program gets mapped into

Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1l)*Iters, N)

A[I] = A[I] + 1

e Code fork a function

Iters = ceiling (N/NUMPROC) ;
FOR P = 0 to NUMPROC - 1 { ParallelExecute(funcl, P); }

BARRIER (NUMPROC) ;
void funcl (integer myPid)

{
FOR I = myPid*Iters to MIN( (myPid+1l) *Iters, N)

A[I] A[I] + 1




Parallel Thread Basics

e Create separate threads

— Create an OS thread

e (hopefully) it will be run on a separate core
— pthread_create(&thr, NULL, &entry_point, NULL)

— Qverhead in thread creation
e Create a separate stack
e Get the OS to allocate a thread

e Thread pool
— Create all the threads (= num cores) at the beginning
— Keep N-1 idling on a barrier, while sequential execution

— Get them to run parallel code by each executing a
function

— Back to the barrier when parallel region is done



Outline

e Parallelizing Compilers
e Dependence Analysis

e Increasing Parallelization Opportunities



Parallelizing Compilers

e Finding FORALL Loops out of FOR loops

e Examples
FOR I = 0 to 5
A[I] = A[I] + 1

FOR I =0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1
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FOR I = 0 to 6 0 —0—0—0—0—-0
FOR J = I to 7 1 O—O0—0O0—O0—0
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e [terations are represented as coordinates in iteration space
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FOR I =

e [terations are represented as coordinates in iteration space

Iteration Space

N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

O to 6
FOR Jd =1I to 7
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Iteration Space

N deep loops - N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

FOR I = 0 to 6

FOR J = I to 7

Iterations are represented as coordinates in iteration space
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Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

012 34567 <«
FOR I = 0 to 6 0 —0—0—0—0——0—0-o0
FOR J =I to 7 1 —0—0—0—0—0—0
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e An affine loop nest

— Loop bounds are integer linear functions of constants, loop constant
variables and outer loop indexes

— Array accesses are integer linear functions of constants, loop constant
variables and loop indexes



Iteration Space

e N deep loops > N-dimensional discrete iteration space
— Normalized loops: assume step size = 1

N\ 012 34567
FOR I = 0 to 6 0\—9 O—0—0—0
FOR J = I to 7 ; >
I>3
4
5
6
N
e Affine loop nest - Iteration space as a set of linear inequalities
0<I
[I<6
I<]

J<7



Data Space

e M dimensional arrays - M-dimensional discrete cartesian space
— a hypercube

Integer A(10) 012 345 6789

o——]——— O —— 00—

J0L2345

I

Float B(5, 6) ; 1171
SEERERE

sb 4 L4




Dependences

True dependence
a

a

Anti dependence
a

a

Output dependence
a =
a

Definition:

Data dependence exists for a dynamic instance i and j iff
— either i or j is a write operation
— iand j refer to the same variable
— i executes before j

How about array accesses within loops?
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Array Accesses in a loop

FOR I =0 to 5
A[I] = A[I] + 1

Iteration Space Data Space
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All]

A[T]

A[T]

A[T]
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A[l]
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Array Accesses in a loop
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A[T+1]

A[T+1]

A[T+1]
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A[I+1]
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Array Accesses in a loop

N FOR I =0 to 5
! !\\7 A[I+1] = A[I] + 1
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All]

A[T]

A[T]

A[T]

A[T]
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Array Accesses in a loop
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Array Accesses in a loop

Iteration Space

0 12 3 45
o—0—0—0—0—=0
= A[2*I+1]
A[2*I] O
= A[2*1+1]
A[2*I] O
= A[2*I+1]
A[2*I] O
= A[2*1+1] O
A[2*I]
= A[2*I+1]
A[2*I] O
= A[2*I+1]

A[2*]]

FOR I =0 to 5
A[2*I] = A[2*I+1] + 1




Distance Vectors

e A loop has a distance d if there exist a data
dependence from iteration i to j and d = j-i

QQQQQQ TR T =0 o3

A[I] = A[I] + 1

dv:[l] N\ FOR I = 0 to 5
A[I+1] = A[I] + 1

m FOR I =0 to 5

A[I] = A[I+2] + 1

A QTSN FORI =0 tos

A[I] = A[0] + 1




Multi-Dimensional Dependence

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1




Multi-Dimensional Dependence

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I+1l, J] + 1
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e Dependence Analysis
e Increasing Parallelization Opportunities



What is the Dependence?

FOR I =1 to n -]

FOR J =1 to n

A[I, J] = A[I-1, J+1] + 1




What is the Dependence?

FOR I =1 to n -]
FOR J =1 to n |

A[I, J] = A[I-1, J+1] + 1 /
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What is the Dependence?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I-1, J+1] + 1

dv:u



What is the Dependence?

FOR I =1 to n J

 ——
FOR J =1 to n :/.
A[I, J] = A[I-1, J+1] + 1

I
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FOR J =1 to n l"""
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the Dependence?
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What is the Dependence?

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3-1] + A[i-1,3];




Recognizing FORALL Loops

e Find data dependences in loop
— For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration)
in which it refers to a location in the array that the second access

also refers to in at least one of the later dynamic instances
(iterations).
Then there is a data dependence between the statements

— (Note that same array can refer to itself — output dependences)

e Definition

— Loop-carried dependence:
dependence that crosses a loop boundary

o If there are no loop carried dependences - parallelizable



Data Dependence Analysis

e I: Distance Vector method
e II: Integer Programming



Distance Vector Method

e The it loop is parallelizable for all
dependence d = [dy,...,d;,..d, ]
either

onhe of dy,...,d._;is > 0
or
alld,,....d =0



Is the Loop Parallelizable?

ves QQQQQAQ FoRT =0 *o S

A[I] = A[I] + 1

dv=[1] No W\/Q FOR I =0 to 5
A[I+1] = A[I] + 1

A[I] = A[I+2] + 1

ﬂ*» FOR I =0 to 5
No O—0O0—0—0 °

A[I] = A[0] + 1




Are the Loops Parallelizable?

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I, J-1] + 1

Yes
No

2z

FOR I =1 to n
FOR J =1 to n
A[I, J] = A[I+1l, J] + 1

No
Yes




Are the Loops Parallelizable?
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Integer Programming Method

e Example
FOR I = 0 to 5
A[I+1] = A[I] + 1

e Is there a loop-carried dependence between A[I+1] and A[I]

— Are there two distinct iterations i,, and i, such that A[i,+1] is the
same location as A[i,]

— Jintegers i, i, 0<i,,i,<5 i,#1i i,+1=1

o Is there a dependence between A[I+1] and A[I+1]

— Are there two distinct iterations i; and i, such that A[i;+1] is the
same location as A[i,+1]

— Jintegers iy, I, 0<i, b5 =i, K+1=i+1



Integer Programming Method

FOR I = 0 to 5

. A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector



o Affine loop nest - Iteration

Iteration Space

FOR I = 0 to 5

A[I+1] =

N deep loops = n-dimensional
discrete cartesian space
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Integer Programming Method

FOR I = 0 to 5

) A[I+1l] = A[I] + 1
e Formulation

— 3 an integer vector T such that AT <b where
A is an integer matrix and b is an integer vector

e Our problem formulation for A[i] and A[i+1]
— dintegersi,, i, 0<i,, i, <5 i,# I I,+1=1
— 1, # I is not an affine function
e divide into 2 problems
e Problem 1 with i, < i. and problem 2 with i, < i,
e If either problem has a solution - there exists a dependence
— How abouti,+ 1 = i
e Add two inequalities to single problem
iyt 1<i,andi < i,+1



Integer Programming Formulation

FOR I =0 to 5
e Problem 1 A[I+1] = A[I] + 1
0 <i,
iy <5
0<i
i, <5
y < I
Wt 1 =1
I < I+ 1



Integer Programming Formulation

FOR I = 0 to 5

e Problem 1 A[I+1] = A[I] + 1
0 <i, 2>  -iy<0
ly < 5 > ly <5
0<i > -i.<0
i, <5 > i, <5
iy < I > lw-1.<-1
wr1i = -1 < -1
< i,+1 - -y 1. =1



Integer Programming Formulation

e Problem 1 A b
0<i, > -, <0 1 o) (o)
i, <5 > i, <5 1 0 5
0<i > - <0 0 -1 0
i <5 > <5 0 1 5
i, < i, > -i<-1 1 -1 -1
i+1<i > i,-i<-1 1 -1 -1
< i,+1 - -y +1. =1 -1 1) 1/

e and problem 2 with i, < i,



Generalization

e An affine loop nest
FOR 1i; = £,;(c;..c;) to I, (c;..cy)

1 (0) X i2 - f12 (il,cl...ck) to qu (il,Cl...Ck)

A [fal (llln ’ Cl...Ck) ’

i,.1,C1..¢) to I, (i;.1

fa2 (il...in, Cl...Ck) IR/

o Solve 2*n problems of the form
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Increasing Parallelization
Opportunities

e Scalar Privatization

e Reduction Recognition

e Induction Variable Identification
e Array Privatization

e Loop Transformations

e Granularity of Parallelism

e Interprocedural Parallelization




Scalar Privatization

e Example

FOR i =1 to n
X = A[i] * 3;
B[i] = X;

e Is there a loop carried dependence?
e What is the type of dependence?



Privatization

e Analysis:
— Any anti- and output- loop-carried dependences

e Eliminate by assigning in local context
FOR i =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

e Eliminate by expanding into an array
FOR i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];



Privatization

e Need a final assignment to maintain the correct
value after the loop nest

e Eliminate by assigning in local context
FOR i =1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

e Eliminate by expanding into an array
FOR i =1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];
X = Xtmp|[n];



Another Example

e How about |loop-carried true
dependences?

e Example

FOR i =1 to n
X =X+ A[i];

e [s this loop parallelizable?



Reduction Recognition

e Reduction Analysis:
— Only associative operations
— The result is never used within the loop

e Transformation
Integer Xtmp [NUMPROC] ;
Barrier () ;
FOR i = myPid*Iters to MIN( (myPid+1l) *Iters, n)
Xtmp [myPid] = Xtmp[myPid] + A[i];
Barrier () ;
If (myPid == 0) {
FOR p = 0 to NUMPROC-1
X = X + Xtmp[p];



Induction Variables

Example
FOR 1i = 0 to N
A[i] = 2*i;
After strength reduction
t=1
FOR 1i = 0 to N
A[i] = t;
t = t*2;

What happened to loop carried dependences?

Need to do opposite of this!

— Perform induction variable analysis
— Rewrite IVs as a function of the loop variable



Array Privatization

e Similar to scalar privatization

e However, analysis is more complex

— Array Data Dependence Analysis:
Checks if two iterations access the same location

— Array Data Flow Analysis:
Checks if two iterations access the same value

e Transformations
— Similar to scalar privatization

— Private copy for each processor or expand with an
additional dimension



Loop Transformations

e A loop may not be parallel as is
e Example

FOR i =1 to N-1
FOR j = 1 to N-1
A[lIJ] = A[llj_ll + A[l_llJ]I




Loop Transformations

_>J

e A loop may not be parallel as is l
e Example I

FOR i =1 to N-1
FOR j = 1 to N-1
A[irj] = A[irj_ll + A[i_llj];

o After loop Skewing L}J Ll) HLOJ

FOR i = 1 to 2*N-3
FORPAR j = max(1l,i-N+2) to min(i, N-1)
A[i_j+1lj] = A[i_j+1lj_1] + A[i_jrj];




Granularity of Parallelism

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Gets transformed into
FOR i = 1 to N-1
Barrier () ;
FOR j = 1+ myPid*Iters to MIN( (myPid+1l) *Iters, n-1)
A[i,j] = A[i,j] + A[i-1,3];
Barrier () ;

e Inner loop parallelism can be expensive
— Startup and teardown overhead of parallel regions
— Lot of synchronization
— Can even lead to slowdowns



Granularity of Parallelism

e Inner loop parallelism can be expensive

e Solutions

— Don't parallelize if the amount of work within
the loop is too small

or
— Transform into outer-loop parallelism



Outer Loop Parallelism

.l

O=—p-O—PO—PO—pO—pO

e Example
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

—

1
1
111
1
l

—»O0—>»0—0—>»0—0
00000

o After Loop Transpose
FOR j = 1 to N-1
FOR i = 1 to N-1
A[i,3] = A[i,3] + A[i-1,3];

e Get mapped into
Barrier () ;
FOR j = 1+ myPid*Iters to MIN( (myPid+1l) *Iters, n-1)
FOR i = 1 to N-1
A[i,3j] = A[i,3] + A[i-1,3];
Barrier () ;




Unimodular Transformations

e Interchange, reverse and skew

e Use a matrix transformation
Inew = A IoId

e Interchange
e Reverse

e Skew




Legality of Transformations

e Unimodular transformation with matrix A is valid iff.
For all dependence vectors v
the first non-zero in Av is positive

e Example T -
FOR i = 1 to N-1 dv=| | —
FOR j = 1 to N-1 0 1 0 1

A[i,j] = A[i,]3] + A[i-1,3];
0 1 O 1(1 O 0 1
+ Interchange IR *
e Reverse A=) ' '

e Skew



Interprocedural Parallelization

e Function calls will make a loop unparallelizatble
— Reduction of available parallelism
— A lot of inner-loop parallelism

e Solutions
— Interprocedural Analysis
— Inlining



Interprocedural Parallelization

e Issues
— Same function reused many times
— Analyze a function on each trace - Possibly exponential
— Analyze a function once = unrealizable path problem

e Interprocedural Analysis
— Need to update all the analysis
— Complex analysis
— Can be expensive

e Inlining
— Works with existing analysis
— Large code bloat = can be very expensive



HashSet h;

fori=1ton
int v = compute(i);
h.insert(i);

Are iterations independent?
Can you still execute the loop in parallel?
Do all parallel executions give same result?



Summary

e Multicores are here
— Need parallelism to keep the performance gains
— Programmer defined or compiler extracted parallelism

e Automatic parallelization of loops with arrays
— Requires Data Dependence Analysis
— Iteration space & data space abstraction
— An integer programming problem

e Many optimizations that'll increase parallelism



