MIT 6.1100
Foundations of Dataflow Analysis

Martin Rinard
Massachusetts Institute of Technology

Program Representation

* Control Flow Graph
— Nodes N — statements of program
— Edges E — flow of control
* pred(n) = set of all predecessors of n
* succ(n) = set of all successors of n
— Start node n,,
— Set of final nodes N

final

Basic Idea

* Information about program represented using
values from algebraic structure called lattice

* Analysis produces lattice value for each
program point

» Two flavors of analysis
— Forward dataflow analysis

— Backward dataflow analysis

Dataflow Analysis

e Compile-Time Reasoning About
* Run-Time Values of Variables or Expressions
» At Different Program Points

— Which assignment statements produced value of
variable at this point?
Which variables contain values that are no longer
used after this program point?

— What is the range of possible values of variable at
this program point?

Program Points

One program point before each node

One program point after each node

Join point — point with multiple predecessors
Split point — point with multiple successors

Forward Dataflow Analysis

* Analysis propagates values forward through control
flow graph with flow of control
— Each node has a transfer function f
* Input — value at program point before node
 Output — new value at program point after node
— Values flow from program points after predecessor
nodes to program points before successor nodes
— At join points, values are combined using a merge
function

» Canonical Example: Reaching Definitions

Backward Dataflow Analysis Partial Orders

* Analysis propagates values backward through control o Set P

flow graph against flow of control :
gepRap R * Partial order < such that Vx,y,zeP
— Each node has a transfer function f .
o —-X<Xx (reflexive)
* Input — value at program point after node . . .
) —x<yandy<ximpliesx =y (asymmetric)
* Output — new value at program point before node . .
> —x<yandy<zimpliesx <z (transitive)
— Values flow from program points before successor C 21 ord defi
nodes to program points after predecessor nodes an use partial order to define

— At split points, values are combined using a merge — Upper and lower bounds
function — Least upper bound

— Canonical Example: Live Variables — Greatest lower bound

Upper Bounds Lower Bounds

e If S < P then e If S < P then
— xeP is an upper bound of S if VyeS. y <x — xePis a lower bound of S if VyeS. x <y
— x€P is the least upper bound of S if — xeP is the greatest lower bound of S if
* X is an upper bound of S, and * x is a lower bound of S, and
» x <y for all upper bounds y of S * y <x for all lower bounds y of S
— Vv - join, least upper bound, lub, supremum, sup — A - meet, greatest lower bound, glb, infimum, inf
* v S is the least upper bound of S

* A S is the greatest lower bound of S

* x vy is the least upper bound of {x,y} * X Ay is the greatest lower bound of {x,y}

Covering Example

¢ XL y le < y and Xiy e P= { OOO, 001, 010, 011, 100, 1017 110, 111}
(standard boolean lattice, also called hypercube)

* x is covered by y (y covers x) if S O I

—x <Yy, and
—x<z<yimplies x =z Hasse Diagram
» Conceptually, y covers x if there are no \ * Ify covers x

elements between x and y * Line from y to x

* y above x in diagram

Lattices Lattices

* Ifx A yandx vy exist for all x,yeP, Ifx Ay and x v y exist for all x,yeP,
then P is a lattice. then P is a lattice.

e If AS and vS exist for all S — P, If AS and VS exist forall S C P,

. . then P i lete lattice.
then P is a complete lattice. . e,n ° ,a S
All finite lattices are complete

* All finite lattices are complete Example of a lattice that is not complete

— Integers I

— Forany x, yel, x vy = max(x,y), X A y = min(x,y)
— But v I and A I do not exist

— TV {+00,—0 } is a complete lattice

Top and Bottom Connection Between <, A, and v

» The following 3 properties are equivalent:
* Greatest element of P (if it exists) is top —x<y
* Least element of P (if it exists) is bottom (L) XVy=y
- XAYy=X
* Will prove:
— x<yimpliesxvy=yand X Ay =X
— xvy=yimpliesx <y
X Ay=ximpliesx <y
e Then by transitivity, can obtain
— xVvy=yimpliesXx Ay =X

XAy=ximpliessxvy=y

Connecting Lemma Proofs Connecting Lemma Proofs

e Proof of x <y impliesx vy=y * Proof of x vy =y implies x <y

— x <y implies y is an upper bound of {x,y}. —y is an upper bound of {x,y} implies x <y

— Any upper bound z of {x,y} must satisfy y < z. * Proofof x Ay=x impliesx <y

— So y is least upper bound of {x,y} andx vy=y — x is a lower bound of {x,y} implies x <y
* Proof of x <y implies x A y =X

— x <y implies x is a lower bound of {x,y}.

Any lower bound z of {x,y} must satisfy z <x.
— So x is greatest lower bound of {x,y} and X A y =X

Lattices as Algebraic Structures Algebraic Properties of Lattices

* Have defined v and A in terms of < Assume arbitrary operations v and A such that

 Will now define < in terms of v and A —(xvy)vz=xv(yvz) (associativity of v)
— Start with v and A as arbitrary algebraic operations —(xAy)Az=xA(yAz) (associativity of A)
that satisfy associative, commutative, idempotence, —XVy=yVvX (commutativity of v)
and absorption laws —XAY=yAX (commutativity of A)
— Will define < using v and A XV X=X (idempotence of V)
— Will show that < is a partial order CXAX=X (idempotence of A)
* Intuitive concept of v and A as information XV (XAY)=X (absorption of v over A)
combination operators (or, and) —XAXVY)=X (absorption of A over V)

Connection Between A and v Properties of <

e xvy=yifandonly ifx Ay=x * Definex<yifxvy=y
* Proof of x vy=yimpliesx =X Ay * Proof of transitive property. Must show that
X=XA(xvy) (byabsorption) xvy=yandyvz=zimpliesxvz=z
SHAY (by assumption) X Vvz=xV(yV z) (by assumption)
* Proof of x Ay =ximpliesy=x vy = (x vy) v z (by associativity)
y=y V(Y AX) (by absorption) =yvz (by assumption)
=yVv(XAY) (by commutativity) =z (by assumption)
=y VX (by assumption)
=XVYy (by commutativity)

Properties of < Properties of <

* Proof of asymmetry property. Must show that * Induced operation < agrees with original

XVy=y and yVX=X in’lplies X=y definitions of v and A, i.e.,

x=yvx (byassumption) —XVy=sup {X,y}

=xvy (by commutativity) —x Ay =inf {x, y}
=y (by assumption)
* Proof of reflexivity property. Must show that
XVX=X

X VX=X (by idempotence)

Proof of x vy = sup {x, y}

» Consider any upper bound u for x and y.
* Givenx vu=uand y v u=u, must show
xvy<uie,Xvy)vu=u
u=xvu (by assumption)
=xVv(yvu) (by assumption)
=(xvyvu (by associativity)

Chains

* AsetSisachainif Vx,yeS.y<xorx<y

* P has no infinite chains if every chain in P is
finite

P satisfies the ascending chain condition if
for all sequences x; < x, < ...there exists n

such that x, = x,,; = ...

Transfer Functions

e Transfer function f: P—P for each node in
control flow graph

» fmodels effect of the node on the program
information

Proof of x A y = inf {X, y}

» Consider any lower bound I for x and y.
* Givenx Al=1land y A I =L, must show
I<xAyie,(xAy)al=1
l=xnal (by assumption)
=xA(yal) (by assumption)
=xAy Al (by associativity)

Application to Dataflow Analysis

» Dataflow information will be lattice values
— Transfer functions operate on lattice values

— Solution algorithm will generate increasing
sequence of values at each program point

— Ascending chain condition will ensure termination

* Will use v to combine values at control-flow
join points

Transfer Functions

Each dataflow analysis problem has a set F of
transfer functions f: P—P
— Identity function ieF
— F must be closed under composition:
Vf,geF. the function h = Ax.f(g(x)) €F
Each f eF must be monotone:
x <y implies f(x) < f(y)
— Sometimes all f €F are distributive:
fix vy) =1(x) v f(y)
— Distributivity implies monotonicity

Distributivity Implies Monotonicity

* Proof of distributivity implies monotonicity
* Assume f(x v y) = f(x) v {(y)
* Must show: x v y =y implies f(x) v f(y) = f(y)
fly)=fx vy) (by assumption)
=f(x) v f(y) (by distributivity)

Forward Dataflow Analysis

» Simulates execution of program forward with
flow of control
* For each node n, have
— in, — value at program point before n
— out, — value at program point after n
— f, — transfer function for n (given in
* Require that solution satisfy
— Vn. out, = f,(in,)
— Vn #n,. in,= Vv { out,, . m in pred(n) }

1 computes out,)

inn() =1
— Where I summarizes information at start of program

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do out, := (L)

innO = I; OUtnO = an(l)

worklist := N - { n, }

while worklist # & do
remove a node n from worklist
in, := v { out,,

utl] = fn(inn)

if out, changed then

.m in pred(n) }

worklist := worklist U succ(n)

Putting Pieces Together

* Forward Dataflow Analysis Framework

» Simulates execution of program forward with
flow of control

Dataflow Equations

Compiler processes program to obtain a set of
dataflow equations

Outll = 1:ll(irl]’l)

in, ;= v { out,, . m in pred(n) }
Conceptually separates analysis problem from
program

Correctness Argument

Why result satisfies dataflow equations

Whenever process a node n, set out, := f,(in,)
Algorithm ensures that out, = f,(in,))
Whenever out,, changes, put succ(m) on worklist.
Consider any node n € succ(m). It will eventually come
off worklist and algorithm will set

in, := Vv { out,, . m in pred(n) }
to ensure that in, = v { out,, . m in pred(n) }

m *
m *

So final solution will satisfy dataflow equations

Termination Argument

Widening Operators

* Why does algorithm terminate? * Detect lattice values that may be part of infinitely

. . ascending chain
» Sequence of values taken on by in, or out, is a &

« Artificially raise value to least upper bound of chain

chain. If values stop increasing, worklist
empties and algorithm terminates.
[f lattice has ascending chain property,
algorithm terminates
Algorithm terminates for finite lattices
— For lattices without ascending chain property, use
widening operator

Reaching Definitions

P = powerset of set of all definitions in program (all
subsets of set of definitions in program)
v = U (order is ©)
1=0
[=iny=1
F = all functions f of the form f(x) = a U (x-b)
— b is set of definitions that node kills
a is set of definitions that node generates
General pattern for many transfer functions
— f(x) = GEN U (x-KILL)

Does Reaching Definitions
Framework Satisfy Properties?

* What about composition?
— Given fj(x) = a; U (x-b;) and f,(x) = a, U (x-b,)
— Must show f(f,(x)) can be expressed as a U (X - b)
fi(fy(x)) =a; U ((a, U (x-by)) - b))
=a; U ((a;- b)) U ((x-by) - by))
=(a; v (a;-by)) U ((x-by) - by))
=(a, U (a, - b)) U (x-(b, U b))
Leta=(a; U (a,-b;)andb=Db, U b,
— Then f,(f,(x)) =a U (x —b)

« Example:

— Lattice is set of all subsets of integers

— Could be used to collect possible values taken on by

variable during execution of program
— Widening operator might raise all sets of size n or
greater to TOP (likely to be useful for loops)

Does Reaching Definitions
Framework Satisfy Properties?

c satisfies conditions for <

—x cyandy c zimplies X c z (transitivity)

—x cyandy c x implies y = x (asymmetry)

— X C X (reflexive)

* F satisfies transfer function conditions
— Ax.D U (x-) = Ax.xeF (identity)
— Will show f(x U y) = f(x) U f(y) (distributivity)
fix) Ufly)=(au (x=b)) U (aL (y-D))

=aux-bu((y-b)y=au((xuy)—b)
=fxuy)

General Result

All GEN/KILL transfer function frameworks
satisfy
— Identity
— Distributivity
— Composition

Properties

Available Expressions

P = powerset of set of all expressions in
program (all subsets of set of expressions)

v =N (order is D)

1=P

[=in,=9

F = all functions f of the form f(x) = a U (x-b)
— b is set of expressions that node kills

— ais set of expressions that node generates

Another GEN/KILL analysis

Backward Dataflow Analysis

+ Simulates execution of program backward against
the flow of control

* For each node n, have

— in, — value at program point before n

— out, — value at program point after n

— f, — transfer function for n (given out,, computes in,,)
» Require that solution satisfies

— Vn. in, = f,(out,)

— Vn ¢ Nga. out,= Vv {in,, . m in succ(n) }

—Vn € Ng,,; =out, =0

— Where O summarizes information at end of program

Live Variables

P = powerset of set of all variables in program
(all subsets of set of variables in program)

v =U (order is ©)

1=9

0=y

F = all functions f of the form f(x) = a U (x-b)

b is set of variables that node kills

— a is set of variables that node reads

Concept of Conservatism

* Reaching definitions use U as join

— Optimizations must take into account all definitions
that reach along ANY path

» Available expressions use M as join
— Optimization requires expression to reach along
ALL paths
» Optimizations must conservatively take all
possible executions into account. Structure of
analysis varies according to way analysis used.

Worklist Algorithm for Solving

Backward Dataflow Equations

for each n do in, = f, (1)
for each n € Ng,,; do out, := O; in, := £,(O)
worklist ;= N - Ng .1
while worklist # & do

remove a node n from worklist

out, ;= v { in,, . m in succ(n) }

in, := f (out,)

if in, changed then

worklist := worklist U pred(n)

Meaning of Dataflow Results

Control flow graph and set of variables v in V

Concept of program state s in ST

* s is a map that stores values of variables v in V

* s[v] is the value of v in state s
Concept of pair <s,n> - program state s at node n
n executes in s to produce <s’,n’>

* s’ stores values of variables after n executes

e n’ is next node to execute

Execution of Program
(program represented as control flow graph)

» Concept of a program execution
* Execution is a sequence (trajectory) of <s,n> pairs
* <SpNp>; <S N;>; ... <S>
* <s;;; 0> generated from <s; n> by
* executing n; in state s;
* n; updates variable values in s; to produce s;;
« control then flows to n;,,

* 1, is next node to execute after n;

Sign Analysis Example

» Sign analysis - compute sign of each variable v
» Base Lattice: P = flat lattice on {-,0,+}

10
0

oT

Interpretation of Lattice Values

* If value of v in lattice is:
— BOT: no information about sign of v
— -: variable v is negative
— 0: variable vis 0
— +: variable v is positive
— TOP: v may be positive, negative, or zero
* What is abstraction function AF?
— AF([vys...,v,]) = [sign(v)), ..., sign(v,)]
Where sign(v)=0ifv=0,+ifv>0,-ifv<0

Relating Program Executions to Dataflow
Analysis Results
* Meaning of program analysis result is given by
an abstraction function AF:ST->P
* p=AF(s)
* sin ST is a program state
* pin P is an element of dataflow lattice P
 Correctness condition: given any
program execution <syn,>; ...; <s, m;> and pair <s,n>
where s = s; and n = n; for some 0 <1<k
then AF(s) < in, where
in, is result that program analysis produces
at program point before n

Actual Lattice

» Actual lattice records a sign for each variable
— Example element: [a—+, b—0, c—-]
* Function lattice

— Elements of lattice are functions (maps) from
variables to base sign lattice

— For function lattice elements f;and ,
—fi<Hhif Vv in V. fi(v) <£iH(v)

Operation ® on Lattice

BOT + | TOP

BOT BOT

BOT TOP

0 0

Transfer Functions Example

If n of the form v=—c¢ a=1

— £,(x) = x[v—>+] if ¢ is positive

g
—f,(x) =x[v—>0] if cis 0 [a—>+] / \ [a—>+]
b=1

— f,(x) = x[v—>-] if ¢ is negative b=-1
If n of the form v, = v,*v; [a—>+, b»-]\\\ /[a»+, b—>+]
i fn(x) - X[Vl%X[VQ] & X[Vg]] \\\

[= TOP (if variables not initialized) [a—>+,b->TOP] | s
c=a
I=[v,—0, ...,v,—0] [a—+, b>TOP,c -»TOP]
(if variables initialized to 0)

y

Imprecision In Example General Sources of Imprecision

Abstraction Imprecision: Abstraction Imprecision

a=1
PN — Concrete values (integers) abstracted as lattice values (-,0, and +)
[a—>+] / — Lattice values less precise than execution values

[a—1] abstracted as [a—>+]

— Abstraction function throws away information
b=-1 , Control Flow Imprecision
\\\ // A Jattine e . . NA @ 5
[a—>+, b>-] One lattice value for all possible control flow paths

Analysis result has a single lattice value to summarize results of
multiple concrete executions

N\

[a—+, b—>TOP] | . ‘ o ‘
. — Join operation v moves up in lattice to combine values from
c=a

Control Flow Imprecision: different execution paths

[b—)TQP] summarizes results of all executions. In any _ Typically if x <y, then x is more precise than y
execution state s, AF(s)[b]=TOP

Why Have Imprecision Abstraction Function

AF(s)[v] = sign of v
— AF([a—5, b—0, c—>-2]) = [a—>+, b—0, c—>-]

* Make analysis tractable

e Unbounded sets of values in execution

Establishes meaning of the analysis results
— Typically abstracted by finite set of lattice values

i ._ — If analysis says variable has a given sign
* Execution may visit unbounded set of states

— Always has that sign in actual execution
— Abstracted by computing joins of different paths T ——r—
* program execution <s,ny>; ...; <s, n,> and pair <s,n>
e where s =s; and n = n; for some 0 <i<k

—V vin V. AF(s)[v] £in,[v] (n is node for s)
— Reflects possibility of imprecision

Correctness Condition

Start with

program execution <s,n,>; ...; <s, m> and pair <s,n>

where s = s; and n = n; for some 0 <1<k
then AF(s) <in, where

in, is result that program analysis produces

at program point before n

For sign analysis, AF(s) is a map that gives sign of each

variable v
VY ov. AF(S)[V] S inn[v]

Base Case of Induction

* For base case
—i=0,n=n,
—V v.in,[v] = TOP

* Then V v. AF(s)[v] < TOP

Augmented Execution States

» Abstraction functions for some analyses require

augmented execution states

— Reaching definitions: states are augmented with
definition that created each value

— Available expressions: states are augmented with
expression for each value

Sign Analysis Soundness

Given
program execution <s,n,>; ...; <s, m> and pair <s,n>
where s = s; and n = n; for some 0 <1<k
then V v. AF(s)[v] < in,[v] where
in, is result that program analysis produces
at program point before n
Will prove by induction on i
(Iength of execution that produced <s;,n;>)

Induction Step

» Assume V v. AF(s)[v] < in,[v] for executions of length k

Prove for computations of length k+1
Proof:
— Given s = sy, (state), n = n,; (node to execute next), and in,
— Find s, (the previous state), n,(the previous node), and in,;
— By induction hypothesis V v. AF(s)[v] < ing[V]
— Case analysis on form of n;
e If n, of the form v = ¢ (other cases are similar), then
s[v] =c, out, [v] = sign(c),
s[x] = si[x], outy(x) = iny(x) for x # v
By induction hypothesis, Vx. AF(s)[x] < out[X]
out,, < in, (because ny in pred(n) and in, is least upper
bound of set that includes out,;)
— Therefore Vx. AF(s)[x] < in,[x] (transitivity)

Meet Over Paths Solution

What solution would be ideal for a forward dataflow
analysis problem?

Consider a path p =n,, n,, ..., n,, n to a node n
(note that for all i n; € pred(n;.;))

The solution must take this path into account:

£y (1) = (Ffor (- £y (Fp(L)) -.)) < imy,

So the solution must have the property that
v{f, (L) .pis apathton} <in,

and ideally

vif, (1) .pis apathton} =in,

Soundness Proof of Analysis
Algorithm

* Property to prove:
For all paths p ton, f, (1) <in,
* Proof is by induction on length of p
— Uses monotonicity of transfer functions
— Uses following lemma
e Lemma:
Worklist algorithm produces a solution such that
f,(in,) = out,

if n € pred(m) then out, <in,,

Induction Step Proof

s p=ng, ..., MY, N
* Must show fi(fi_;(...f,(f,o(1)) ...)) < in,
— By induction (fi_;(...f,;(f,0(L)) ...)) < ingy
— Apply f, to both sides, by monotonicity we get
filfir (- Er (Fp(L))) < fi(ing)
— By lemma, f,(in,,) = out,,
— By lemma, out, < in,

— By transitivity, fi(fi_(...f,;(f,0(L)) ...)) <in,

Lack of Distributivity Example

e Constant Calculator
» Flat Lattice on Integers

TQP
0

BO

e Actual lattice records a value for each variable
— Example element: [a—3, b—>2, c—>5]

Proof

* Base case: p is of length 1
— Then p=njand f,(1) = L =in,,
* Induction step:
— Assume theorem for all paths of length k

— Show for an arbitrary path p of length k+1

Distributivity
* Distributivity preserves precision
e If framework is distributive, then worklist
algorithm produces the meet over paths solution
— For all n:

vif, (1) .pis apathton} =in,

n

Transfer Functions

e Ifn of the form v=c
— f,(x) = x[v—c]
 Ifn of the form v, = v,+v;
— fi(x) = x[vi=>x[v,] + x[v3]]
 Lack of distributivity
— Consider transfer function f forc=a+b
f([a—3, b—2]) v f([a—>2, b—>3]) = [a—>TOP, b—>TOP, c—5]

— f([a>3, b—>2]v[a—2, b—>3]) = f([a—>TOP, b>TOP]) =
[a—>TOP, b—>TOP, c—TOP]

Lack of Distributivity Anomaly

How to Make Analysis Distributive

» Keep combinations of values on different paths

[a—>2, b—>3] [a—3, b—>2]

{[a—>2, b—>3]}
[a—>TOP, b>TOP] | e iy
+h Lack of Distributivity Imprecision:
c=arb

[a—>TOP, b—>TOP, c—5] more precise

{[a—>3, b—>2]}
[a>TOP, b>TOP, ¢ ->TOP]

| {[a>2, b3], [a—3, bo2]}
c=atb
What is the meet over all paths solution?

{[a—>2, b—>3,c—>5], [a—>3, b>2,c—>5]}

Issues Multiple Fixed Points

» Dataflow analysis generates least fixed point
* May be multiple fixed points
— Exponential blowup

 Basically simulating all combinations of values
in all executions

» Available expressions example
— Nontermination because of infinite ascending chains
» Nontermination solution

— Use widening operator to eliminate blowup
(can make it work at granularity of variables)
— Loses precision in many cases

Summary

» Formal dataflow analysis framework

— Lattices, partial orders, least upper bound, greatest
lower bound, ascending chains

— Transfer functions, joins and splits
— Dataflow equations and fixed point solutions
» Connection with program
— Abstraction function AF: S — P
— For any state s and program point n, AF(s) <in,

— Meet over all paths solutions, distributivity

