MIT 6.1100 Foundations of Dataflow Analysis

Martin Rinard

Massachusetts Institute of Technology

Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?

Program Representation

- Control Flow Graph
 - Nodes N statements of program
 - − Edges E − flow of control
 - pred(n) = set of all predecessors of n
 - succ(n) = set of all successors of n
 - Start node n₀
 - Set of final nodes N_{final}

Program Points

- One program point before each node
- One program point after each node
- Join point point with multiple predecessors
- Split point point with multiple successors

Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input value at program point before node
 - Output new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input value at program point after node
 - Output new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set P
- Partial order \leq such that $\forall x,y,z \in P$

```
-x \le x (reflexive)
```

- $-x \le y$ and $y \le x$ implies x = y (asymmetric)
- $-x \le y$ and $y \le z$ implies $x \le z$ (transitive)
- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- If $S \subseteq P$ then
 - $-x \in P$ is an upper bound of S if $\forall y \in S$. $y \le x$
 - $-x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - \vee join, least upper bound, lub, supremum, sup
 - \vee S is the least upper bound of S
 - $x \vee y$ is the least upper bound of $\{x,y\}$

Lower Bounds

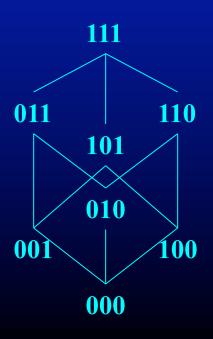
- If $S \subseteq P$ then
 - $-x \in P$ is a lower bound of S if $\forall y \in S$. $x \le y$
 - $-x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \le x$ for all lower bounds y of S
 - \wedge meet, greatest lower bound, glb, infimum, inf
 - \wedge S is the greatest lower bound of S
 - $x \wedge y$ is the greatest lower bound of $\{x,y\}$

Covering

- $x < y \text{ if } x \le y \text{ and } x \ne y$
- x is covered by y (y covers x) if
 - -x < y, and
 - $-x \le z < y \text{ implies } x = z$
- Conceptually, y covers x if there are no elements between x and y

Example

- P = { 000, 001, 010, 011, 100, 101, 110, 111} (standard boolean lattice, also called hypercube)
- $x \le y$ if (x bitwise and y) = x



Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram

Lattices

- If $x \wedge y$ and $x \vee y$ exist for all $x,y \in P$, then P is a lattice.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
- All finite lattices are complete

Lattices

- If $x \wedge y$ and $x \vee y$ exist for all $x,y \in P$, then P is a lattice.
- If \land S and \lor S exist for all S \subseteq P, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
 - Integers I
 - For any $x, y \in I$, $x \lor y = max(x,y)$, $x \land y = min(x,y)$
 - But \vee I and \wedge I do not exist
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice

Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\perp)

Connection Between \leq , \wedge , and \vee

• The following 3 properties are equivalent:

```
- x \le y
- x \lor y = y
- x \land y = x
```

• Will prove:

```
x ≤ y implies x ∨ y = y and x ∧ y = x
x ∨ y = y implies x ≤ y
x ∧ y = x implies x ≤ y
```

• Then by transitivity, can obtain

```
- x \lor y = y \text{ implies } x \land y = x

- x \land y = x \text{ implies } x \lor y = y
```

Connecting Lemma Proofs

- Proof of $x \le y$ implies $x \lor y = y$
 - $-x \le y$ implies y is an upper bound of $\{x,y\}$.
 - Any upper bound z of $\{x,y\}$ must satisfy $y \le z$.
 - So y is least upper bound of $\{x,y\}$ and $x \lor y = y$
- Proof of $x \le y$ implies $x \land y = x$
 - $-x \le y$ implies x is a lower bound of $\{x,y\}$.
 - Any lower bound z of $\{x,y\}$ must satisfy $z \le x$.
 - So x is greatest lower bound of $\{x,y\}$ and $x \wedge y = x$

Connecting Lemma Proofs

- Proof of $x \lor y = y$ implies $x \le y$
 - y is an upper bound of $\{x,y\}$ implies $x \le y$
- Proof of $x \wedge y = x$ implies $x \leq y$
 - x is a lower bound of $\{x,y\}$ implies $x \le y$

Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
 - Start with ∨ and ∧ as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \leq using \vee and \wedge
 - Will show that \leq is a partial order
- Intuitive concept of ∨ and ∧ as information combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that

$$-(x \lor y) \lor z = x \lor (y \lor z)$$
 (associativity of \lor)
$$-(x \land y) \land z = x \land (y \land z)$$
 (associativity of \land)
$$-x \lor y = y \lor x$$
 (commutativity of \lor)
$$-x \land y = y \land x$$
 (commutativity of \land)
$$-x \lor x = x$$
 (idempotence of \lor)
$$-x \land x = x$$
 (idempotence of \land)
$$-x \lor (x \land y) = x$$
 (absorption of \lor over \land)
$$-x \land (x \lor y) = x$$
 (absorption of \land over \lor)

Connection Between \(\lambda \) and \(\lambda \)

- $x \lor y = y$ if and only if $x \land y = x$
- Proof of $x \lor y = y$ implies $x = x \land y$

$$x = x \land (x \lor y)$$
 (by absorption)
= $x \land y$ (by assumption)

• Proof of $x \wedge y = x$ implies $y = x \vee y$

$$y = y \lor (y \land x)$$
 (by absorption)
 $= y \lor (x \land y)$ (by commutativity)
 $= y \lor x$ (by assumption)
 $= x \lor y$ (by commutativity)

Properties of ≤

- Define $x \le y$ if $x \lor y = y$
- Proof of transitive property. Must show that

```
x \lor y = y and y \lor z = z implies x \lor z = z

x \lor z = x \lor (y \lor z) (by assumption)

= (x \lor y) \lor z (by associativity)

= y \lor z (by assumption)

= z (by assumption)
```

Properties of ≤

Proof of asymmetry property. Must show that

```
x \lor y = y and y \lor x = x implies x = y

x = y \lor x (by assumption)

= x \lor y (by commutativity)

= y (by assumption)
```

Proof of reflexivity property. Must show that

```
x \lor x = x

x \lor x = x (by idempotence)
```

Properties of ≤

• Induced operation \leq agrees with original definitions of \vee and \wedge , i.e.,

```
-x \vee y = \sup \{x, y\}
```

$$-x \wedge y = \inf \{x, y\}$$

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \le u$, i.e., $(x \lor y) \lor u = u$

```
u = x \vee u (by assumption)
```

$$= x \lor (y \lor u)$$
 (by assumption)

$$= (x \lor y) \lor u$$
 (by associativity)

Proof of $x \wedge y = \inf \{x, y\}$

- Consider any lower bound I for x and y.
- Given $x \wedge 1 = 1$ and $y \wedge 1 = 1$, must show $1 \le x \wedge y$, i.e., $(x \wedge y) \wedge 1 = 1$

```
x \wedge y, i.e., (x \wedge y) \wedge 1 - 1

1 = x \wedge 1 (by assumption)

= x \wedge (y \wedge 1) (by assumption)

= (x \wedge y) \wedge 1 (by associativity)
```

Chains

- A set S is a chain if $\forall x,y \in S$. $y \le x$ or $x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \le x_2 \le ...$ there exists n such that $x_n = x_{n+1} = ...$

Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use v to combine values at control-flow join points

Transfer Functions

- Transfer function f: P→P for each node in control flow graph
- f models effect of the node on the program information

Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$

- Identity function i∈F
- F must be closed under composition: $\forall f,g \in F$. the function h = $\lambda x.f(g(x)) \in F$
- Each $f \in F$ must be monotone: $x \le y$ implies $f(x) \le f(y)$
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity

Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$ $f(y) = f(x \lor y)$ (by assumption) $= f(x) \lor f(y)$ (by distributivity)

Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
 - in_n value at program point before n
 - out_n value at program point after n
 - $-f_n$ transfer function for n (given in_n, computes out_n)
- Require that solution satisfy
 - $\forall n. out_n = f_n(in_n)$
 - $\forall n \neq n_0$. $in_n = \vee \{ out_m . m in pred(n) \}$
 - $-in_{n0}=I$
 - Where I summarizes information at start of program

Dataflow Equations

 Compiler processes program to obtain a set of dataflow equations

```
out_n := f_n(in_n)
in_n := \vee \{ out_m . m in pred(n) \}
```

Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

```
for each n do out<sub>n</sub> := f_n(\bot)
in_{n0} := I; out_{n0} := f_{n0}(I)
worklist := N - \{ n_0 \}
while worklist \neq \emptyset do
   remove a node n from worklist
   in_n := \vee \{ out_m . m in pred(n) \}
   out_n := f_n(in_n)
   if out, changed then
        worklist := worklist \cup succ(n)
```

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set $out_n := f_n(in_n)$ Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put succ(m) on worklist.
 Consider any node n ∈ succ(m). It will eventually come off worklist and algorithm will set

```
in_n := \vee \{ out_m . m in pred(n) \}
to ensure that in_n = \vee \{ out_m . m in pred(n) \}
```

So final solution will satisfy dataflow equations

Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chain
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee = \cup$ (order is \subseteq)
- ⊥ = ∅
- $I = in_{n0} = \bot$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - a is set of definitions that node generates
- General pattern for many transfer functions

$$- f(x) = GEN \cup (x-KILL)$$

Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \le
 - $-x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $-x \subseteq y$ and $y \subseteq x$ implies y = x (asymmetry)
 - $-x \subseteq x$ (reflexive)
- F satisfies transfer function conditions
 - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F$ (identity)
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity) $f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))$ $= a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)$ $= f(x \cup y)$

Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
 - Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$
 - Must show $f_1(f_2(x))$ can be expressed as a \cup (x b)

$$f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$$

$$= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$$

$$= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$$

$$= (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))$$

- Let $a = (a_1 \cup (a_2 b_1))$ and $b = b_2 \cup b_1$
- Then $f_1(f_2(x)) = a \cup (x b)$

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties

Available Expressions

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\vee = \cap$ (order is \supseteq)
- ⊥ = P
- $I = in_{n0} = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use \cup as join
 - Optimizations must take into account all definitions that reach along ANY path
- - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, have
 - $-in_n$ value at program point before n
 - out_n value at program point after n
 - $-f_n$ transfer function for n (given out_n, computes in_n)
- Require that solution satisfies
 - $\forall n. in_n = f_n(out_n)$
 - $\forall n \notin N_{\text{final}}$. out_n = $\vee \{ \text{ in}_{\text{m}} \text{ . m in succ}(n) \}$
 - $\forall n \in N_{\text{final}} = \text{out}_n = O$
 - Where O summarizes information at end of program

Worklist Algorithm for Solving Backward Dataflow Equations

```
for each n do in<sub>n</sub> := f_n(\bot)
for each n \in N_{final} do out<sub>n</sub> := O; in<sub>n</sub> := f_n(O)
worklist := N - N_{final}
while worklist \neq \emptyset do
   remove a node n from worklist
   \overline{out_n} := \vee \{ in_m . m in succ(n) \}
   in_n := f_n(out_n)
   if in, changed then
        worklist := worklist \cup pred(n)
```

Live Variables

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee = \cup$ (order is \subseteq)
- ⊥ = ∅
- \bullet $\mathbf{O} = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads

Meaning of Dataflow Results

- Control flow graph and set of variables v in V
- Concept of program state s in ST
 - s is a map that stores values of variables v in V
 - s[v] is the value of v in state s
- Concept of pair <s,n> program state s at node n
- n executes in s to produce <s',n'>
 - s' stores values of variables after n executes
 - n' is next node to execute

Execution of Program

(program represented as control flow graph)

- Concept of a program execution
- Execution is a sequence (trajectory) of <s,n> pairs
 - <s₀, $n_0>$; <s₁, $n_1>$; ...; <s_k, $n_k>$
 - $\langle s_{i+1}, n_{i+1} \rangle$ generated from $\langle s_i, n_i \rangle$ by
 - executing n_i in state s_i
 - n_i updates variable values in s_i to produce s_{i+1}
 - control then flows to n_{i+1}
 - n_{i+1} is next node to execute after n_i

Relating Program Executions to Dataflow Analysis Results

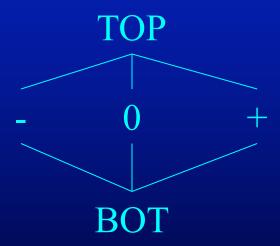
- Meaning of program analysis result is given by an abstraction function AF:ST->P
 - $p = \overline{AF(s)}$
 - s in ST is a program state
 - p in P is an element of dataflow lattice P
- Correctness condition: given any

at program point before n

```
program execution \langle s_0, n_0 \rangle; ...; \langle s_k, n_k \rangle and pair \langle s, n \rangle where s = s_i and n = n_i for some 0 \le i \le k then AF(s) \le in_n where in_n is result that program analysis produces
```

Sign Analysis Example

- Sign analysis compute sign of each variable v
- Base Lattice: $P = \text{flat lattice on } \{-,0,+\}$



Actual Lattice

- Actual lattice records a sign for each variable
 - Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$
- Function lattice
 - Elements of lattice are functions (maps) from variables to base sign lattice
 - For function lattice elements f₁ and _{f2}
 - $-f_1 \le f_2$ if \forall v in V. $f_1(v) \le f_2(v)$

Interpretation of Lattice Values

- If value of v in lattice is:
 - BOT: no information about sign of v
 - -: variable v is negative
 - -0: variable v is 0
 - +: variable v is positive
 - TOP: v may be positive, negative, or zero
- What is abstraction function AF?
 - $-AF([v_1,...,v_n]) = [sign(v_1), ..., sign(v_n)]$
 - Where sign(v) = 0 if v = 0, + if v > 0, if v < 0

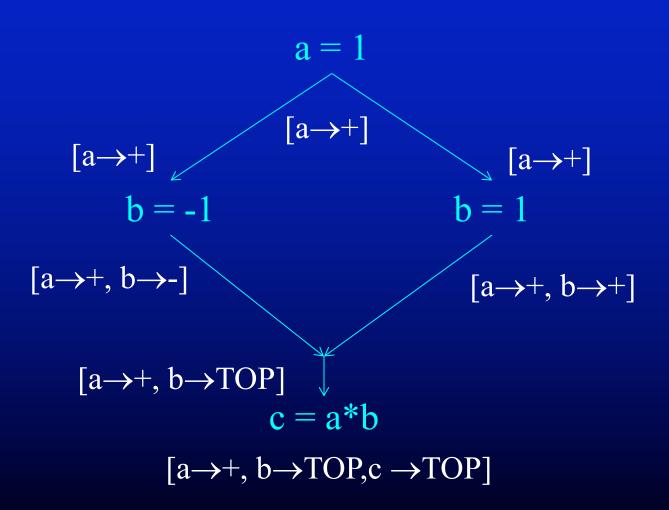
Operation \otimes on Lattice

\otimes	ВОТ	-	0	+	TOP
ВОТ	BOT	BOT	0	ВОТ	ВОТ
-	BOT	+	0	-	TOP
0	0	0	0	0	0
+	BOT	-	0	+	TOP
TOP	ВОТ	TOP	0	TOP	TOP

Transfer Functions

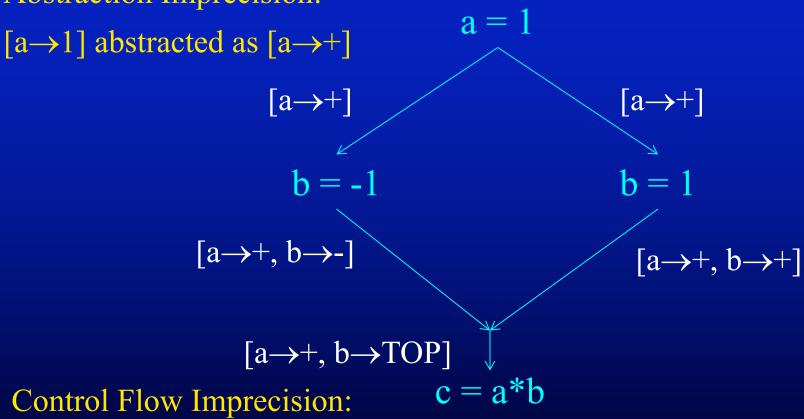
- If n of the form v = c
 - $-f_n(x) = x[v \rightarrow +]$ if c is positive
 - $f_n(x) = x[v \rightarrow 0]$ if c is 0
 - $f_n(x) = x[v \rightarrow -]$ if c is negative
- If n of the form $v_1 = v_2 * v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]]$
- I = TOP (if variables not initialized)
- $I = [v_1 \rightarrow 0, ..., v_n \rightarrow 0]$ (if variables initialized to 0)

Example



Imprecision In Example

Abstraction Imprecision:



[b \rightarrow TOP] summarizes results of all executions. In any execution state s, AF(s)[b] \neq TOP

General Sources of Imprecision

Abstraction Imprecision

- Concrete values (integers) abstracted as lattice values (-,0, and +)
- Lattice values less precise than execution values
- Abstraction function throws away information

Control Flow Imprecision

- One lattice value for all possible control flow paths
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join operation v moves up in lattice to combine values from different execution paths
- Typically if $x \le y$, then x is more precise than y

Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
 - Abstracted by computing joins of different paths

Abstraction Function

- AF(s)[v] = sign of v
 - $-AF([a\rightarrow 5, b\rightarrow 0, c\rightarrow -2]) = [a\rightarrow +, b\rightarrow 0, c\rightarrow -]$
- Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution
- Correctness condition:
 - program execution $\langle s_0, n_0 \rangle$; ...; $\langle s_k, n_k \rangle$ and pair $\langle s, n \rangle$
 - where $s = s_i$ and $n = n_i$ for some $0 \le i \le k$
 - $\forall v \text{ in } V. \text{ AF(s)[v]} \leq \text{in}_n[v] \text{ (n is node for s)}$
 - Reflects possibility of imprecision

Correctness Condition

```
Start with
```

```
program execution \langle s_0, n_0 \rangle; ...; \langle s_k, n_k \rangle and pair \langle s, n \rangle where s = s_i and n = n_i for some 0 \le i \le k then AF(s) \le in_n where in_n is result that program analysis produces at program point before n For sign analysis, AF(s) is a map that gives sign of each variable v
```

$$\forall$$
 v. AF(s)[v] \leq in_n[v]

Sign Analysis Soundness

Given

```
program execution \langle s_0, n_0 \rangle; ...; \langle s_k, n_k \rangle and pair \langle s, n \rangle where s = s_i and n = n_i for some 0 \le i \le k then \forall v. AF(s)[v] \le in_n[v] where in_n is result that program analysis produces at program point before n Will prove by induction on i (length of execution that produced \langle s_i, n_i \rangle)
```

Base Case of Induction

For base case

$$-i = 0$$
, $n = n_0$
 $- \forall v. in_{n0}[v] = TOP$

• Then \forall v. $AF(s)[v] \leq TOP$

Induction Step

- Assume \forall v. AF(s)[v] \leq in_n[v] for executions of length k
- Prove for computations of length k+1
- Proof:
 - Given $s = s_{k+1}$ (state), $n = n_{k+1}$ (node to execute next), and in
 - Find s_k (the previous state), n_k (the previous node), and in_{nk}
 - By induction hypothesis \forall v. AF(s_k)[v] ≤ in_{nk}[v]
 - Case analysis on form of n_k
 - If n_k of the form v = c (other cases are similar), then
 - -s[v] = c, out_{nk}[v] = sign(c),
 - $-s[x] = s_k[x]$, out_{nk} $(x) = in_{nk}(x)$ for $x \neq y$
 - By induction hypothesis, $\forall x$. AF(s)[x] ≤ out_{nk}[x]
 - $-\operatorname{out}_{nk} \le \operatorname{in}_n$ (because n_k in $\operatorname{pred}(n)$ and in_n is least upper bound of set that includes out_{nk})
 - Therefore $\forall x. AF(s)[x] \le in_n[x]$ (transitivity)

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
 - Reaching definitions: states are augmented with definition that created each value
 - Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- Consider a path $p = n_0, n_1, ..., n_k, n$ to a node n (note that for all $i n_i \in pred(n_{i+1})$)
- The solution must take this path into account: $f_p(\bot) = (f_{nk}(f_{nk-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$
- So the solution must have the property that $\lor \{f_p \ (\bot) \ . \ p \ is \ a \ path \ to \ n\} \le in_n$ and ideally
 - $\vee \{f_p(\bot) \cdot p \text{ is a path to } n\} = in_n$

Soundness Proof of Analysis Algorithm

• Property to prove:

```
For all paths p to n, f_p(\bot) \le in_n
```

- Proof is by induction on length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma
- Lemma:

Worklist algorithm produces a solution such that

$$f_n(in_n) = out_n$$

if $n \in pred(m)$ then $out_n \le in_m$

Proof

- Base case: p is of length 1
 - Then $p = n_0$ and $f_p(\bot) = \bot = in_{n0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1

Induction Step Proof

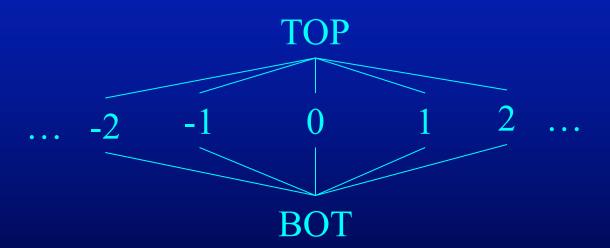
- $p = n_0, ..., n_k, n$
- Must show $f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$
 - By induction $(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_{nk}$
 - Apply f_k to both sides, by monotonicity we get $f_k(f_{k-1}(\dots f_{n1}(f_{n0}(\bot))\dots)) \leq f_k(in_{nk})$
 - By lemma, $f_k(in_{nk}) = out_{nk}$
 - By lemma, out_{nk} ≤ in_n
 - By transitivity, $f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 - $\sqrt{\{f_p(\bot) \cdot p \text{ is a path to n}\}} = in_n$

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

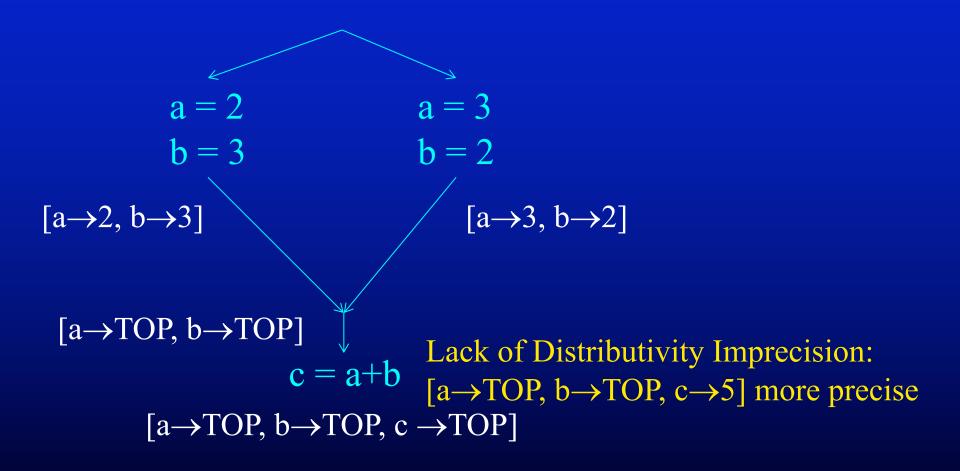


- Actual lattice records a value for each variable
 - Example element: $[a\rightarrow 3, b\rightarrow 2, c\rightarrow 5]$

Transfer Functions

- If n of the form v = c
 - $-f_n(x) = x[v \rightarrow c]$
- If n of the form $v_1 = v_2 + v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$
- Lack of distributivity
 - Consider transfer function f for c = a + b
 - $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow TOP, b \rightarrow TOP, c \rightarrow 5]$
 - $f([a \rightarrow 3, b \rightarrow 2] \lor [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow TOP, b \rightarrow TOP]) =$ $[a \rightarrow TOP, b \rightarrow TOP, c \rightarrow TOP]$

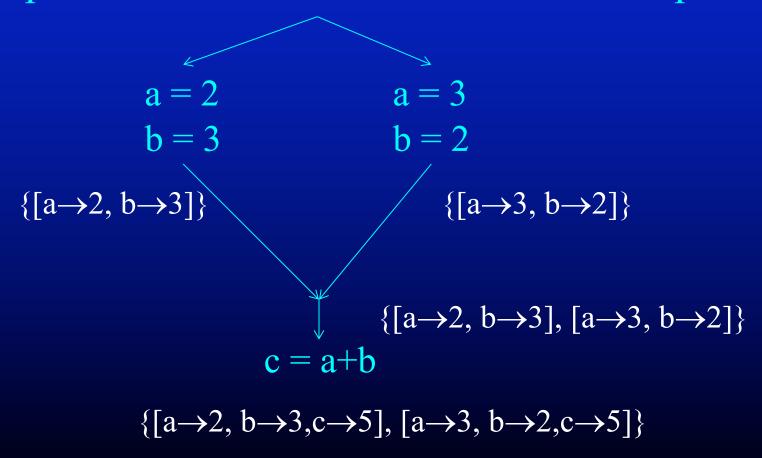
Lack of Distributivity Anomaly



What is the meet over all paths solution?

How to Make Analysis Distributive

Keep combinations of values on different paths

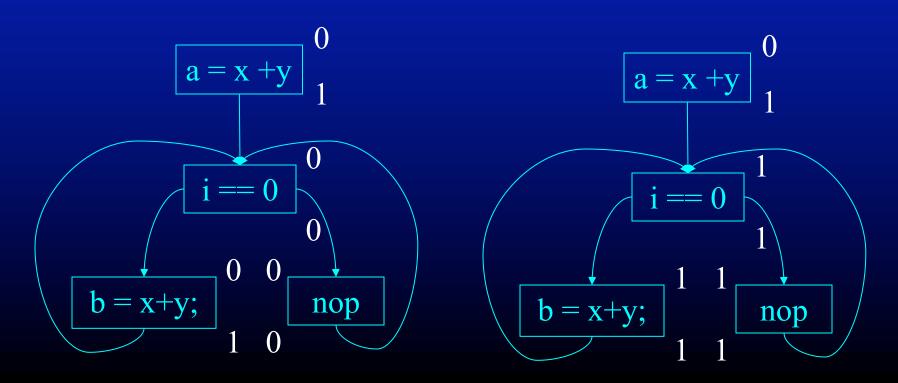


Issues

- Basically simulating all combinations of values in all executions
 - Exponential blowup
 - Nontermination because of infinite ascending chains
- Nontermination solution
 - Use widening operator to eliminate blowup
 (can make it work at granularity of variables)
 - Loses precision in many cases

Multiple Fixed Points

- Dataflow analysis generates least fixed point
- May be multiple fixed points
- Available expressions example



Summary

- Formal dataflow analysis framework
 - Lattices, partial orders, least upper bound, greatest lower bound, ascending chains
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function AF: $S \rightarrow P$
 - $\overline{-}$ For any state s and program point n, $AF(s) \le in_n$
 - Meet over all paths solutions, distributivity