6.110 Spring 2025 Miniquiz 3 IR and Semantics

1 Intermediate Representation

Suppose we have the following code:

class A {
b: (int, list<int>)
int d(this) {
return this.b.@ + this.b.1.sum();
}
}

Write down a representation for this code in an IR of your choosing. Optionally, represent
it using symbol tables and descriptors.

Something like this would suffice. On a quiz you don’t have to match this exactly. Aslong
as have an IR that represents all the information that needs representing, you're good.

6.110 Spring 2025 Miniquiz 3 IR and Semantics

2 Subclassing Semantics

Suppose we have the following class definitions:

class Rocket { .. }
class Spaceship extends Rocket { .. }

And the following code:
Rocket r;

Spaceship s;

fn launch(Rocket) -> Rocket { .. }

fn upgrade(Rocket) -> Spaceship { .. }

fn reboot_flight_software(Spaceship) -> Spaceship { .. }
fn retire(Spaceship) -> Rocket { .. }

Which of the following calls are valid?
[] Spaceship s' = launch(s);
L] Rocket r' = upgrade(r);

[J Spaceship s' reboot_flight_software(r);

[] Spaceship s' = retire(r);

Answer:

Spaceship s' = launch(s); is fine as spaceships can be used anywhere rockets are
needed.

Rocket r' = upgrade(r); is fine because the return type of upgrade is spaceship, which
is a type of rocket

Spaceship s' = reboot_flight_software(r); isnotfine as the argument to reboot_flight_software
has to already be Spaceship (since apparently Rockets don’t have flight software), and not
all Rockets are Spaceships.

Spaceship s' = retire(r); is also not legal as only Spaceships can be retired, but not all
Rockets are Spaceships. Also, all we know about a retired Spaceship is that it is a Rocket,
so we cannot necessarily assign to returned value to a Spaceship.

6.110 Spring 2025 Miniquiz 3 IR and Semantics

3 Short Circuiting

Consider the following code, which is similar to Decaf and has similar precedence rules:

bool took_shower = false;

bool take_shower() {
took_shower = true;
return true;

}

bool touched_grass = false;

bool touch_grass() {
touched_grass = true;
return false;

Now, consider the following condition:
bool compiler_working = touch_grass() || take_shower();

Once the student gets their compiler working, have they touched grass and showered?
(what are the values of took_shower and touched_grass)? [yes/no]

Answer: Yes, as the call to touch_grass returns false so the student evaluates the right
side of the condition (showers).

Next year, the student’s friend, who is slightly more hygienic, decides to shower first.
bool compiler_working = take_shower() || touch_grass();
Does this student end up having to touch grass to get their compiler working? [yes/no]

Answer: No, as the call take_shower returns true, so evaluation of the or stops (no touch-
ing grass).

In the third iteration of the class, the professor greatly boosts the difficulty, but also hosts
office hours to compensate.

bool went_to_oh;

bool go_to_oh() {
went_to_oh = true;
return true;

}

bool compiler_working = take_shower() && go_to_oh() || touch_grass();

Now, has the student touched grass by the time they get their compiler working?
[yes/no]

6.110 Spring 2025 Miniquiz 3 IR and Semantics

Answer: No, as logical and has higher precedence than logical or, so taking a shower
and going to OH is enough.

6.110 Spring 2025 Miniquiz 3 IR and Semantics

Finally, consider a slightly different situation:
bool compiler_working = take_shower() && (go_to_oh() || touched_grass());
Now, has the student touched grass? [yes/no]

Answer: No, as the logical or stops evaluating once the student goes to OH.

