
6.110 Spring 2025 Miniquiz 4 Code Generation

1 x86 Assembly

1.1 Modular Exponentation

Alice wants to implement her own version of modular exponentiation, an important
primitive operation in public-key cryptography.

She was able to complete most of the subroutine in assembly language:

modexp:
pushl %r12d
movl %edi, %eax
movl %edx, %r8d
movl $1, %r12d
testl #1, #1
je .L1
movl $0, %edx
divl %r8d ;; eax = eax / r8d; edx = eax % r8d
movl %edx, %ecx
jmp .L4

.L3:
imull %ecx, %ecx ;; ecx = ecx * ecx
movl %ecx, %eax
movl $0, %edx
divl %r8d ;; eax = eax / r8d; edx = eax % r8d
movl %edx, %ecx
#2 %esi
testl %esi, %esi
je .L1

.L4:
movl %esi, %edi
andl $3, %edi
cmpl $1, %edi
jne .L3

.L2:
movl %r12d, %eax
imull %ecx, %eax ;; eax = ecx * eax
movl $0, %edx
divl %r8d
movl %edx, %r12d
jmp .L3

.L1:
movl %r12d, #3

#4
ret

1

6.110 Spring 2025 Miniquiz 4 Code Generation

Alice dropped 6.110 last week, so she does not know how to implement the rest of the
subroutine. The final program should be equivalent to the following C code:

unsigned modexp(unsigned base, unsigned exp, unsigned mod) {
unsigned result = 1;
base = base % mod;

while (exp > 0) {
if ((exp & 3) == 1) {

result = (result * base) % mod;
}
base = (base * base) % mod;
exp = exp >> 1;

}
return result;

}

She wants her code to follow the x86 calling convention. She knows that #1 should be a
register, that #2 should be an x86 instruction mnemonic, that #3 should be a register, and
that #4 should be a missing instruction.

Answer.

1. %esi

2. shrl

3. %eax

4. popl %r12d

2

6.110 Spring 2025 Miniquiz 4 Code Generation

1.2 One-Time Pad

Eve is trying to reverse engineer Alice’s source code. However, Eve has skipped the 6.110
lectures on code generation and has not yet watched the relecture. Help Eve by writing
Decaf code that could have resulted in the following x86 code. Assume that Decaf has an
XOR (^) operator which works similarly to how it works in C.

Hint. Your solution should include some global declarations.

.LC0:
.string "output[%d] = %d"

key:
.zero 64

input:
.zero 64

output:
.zero 64

main:
pushq %rbx
movl $0, %eax

.L2:
movslq %eax, %rdx
movl input(,%rdx,4), %ecx
movl key(,%rdx,4), %esi
xorl %esi, %ecx
movl %ecx, output(,%rdx,4)
addl $1, %eax
cmpl $16, %eax
jne .L2
movl $0, %ebx

.L3:
movslq %ebx, %rax
movl output(,%rax,4), %edx
movl %ebx, %esi
movl $.LC0, %edi
movl $0, %eax
call printf
addl $1, %ebx
cmpl $16, %ebx
jne .L3
popq %rbx
ret

3

6.110 Spring 2025 Miniquiz 4 Code Generation

Answer. Your code does not need to match exactly, but should be close enough.

import printf;

int output[16];
int input[16];
int key[16];

void main() {
int i;
int j;
for (i = 0; i < 16; i++) {

output[i] = input[i] ^ key[i];
}

for (j = 0; j < 16; j++) {
printf("output[%d] = %d", j, output[j]);

}
}

4

6.110 Spring 2025 Miniquiz 4 Code Generation

2 Control-Flow Graphs

2.1 The Pulverizer

Bob is implementing a key exchange system that requires computing the modular inverse
of an integer a modulo b. To do this, Bob writes a procedure implementing the Extended
Euclidean Algorithm which computes,

a · x + b · y = gcd(a, b)

Bob wrote the following implementation in Decaf:

void extended_gcd(int a, int b) {
int x, y;
int x0, y0, x1, y1;
x = 0;
y = 0;
x0 = 1;
y0 = 0;
x1 = 0;
y1 = 1;
while (a != 0) {

int q, t1, t2, t3;
q = b / a;
t1 = a;
a = b % a;
b = t1;
t2 = x1;
x1 = x0 - q * x1;
x0 = t2;
t3 = y1;
y1 = y0 - q * y1;
y0 = t3;

}
x = x0;
y = y0;
printf("x = %d; y = %d\n", x, y);

}

Construct the control-flow graph for Bob’s extended_gcd procedure. Clearly indicate all
basic blocks and control flow edges.

5

6.110 Spring 2025 Miniquiz 4 Code Generation

Answer.

x0 ← 1
y0 ← 0
x1 ← 0
y1 ← 1

q← b / a
t1 ← a

a← b % a
b← t1
t2 ← x1

x1 ← q× x1
x1 ← x0 − x1

x0 ← t2
t3 ← y1

y1 ← q× y1
x1 ← y0 − y1

y0 ← t3

a = 0

x ← x0
y← y0

t

f

6

