1 Lattices

Let $L = \{000, 001, 010, 011, 100, 101, 110, 111\}$, with $a \le b$ defined by a & b = a.

1.1 Hasse Diagram

Draw the Hasse Diagram for this lattice. Recall that a lattice element y covering an element x is represented by an edge from y to x.

- 1.2 Is this lattice complete?
- 1.3 What is the top element?
- 1.4 What is the bottom element?
- 1.5 Evaluate the following:

Expression	Value
$100 \wedge 110$	
$011 \lor (001 \land 111)$	
$010 \lor 001$	
$001 \wedge (100 \vee 010)$	

2 Parity Analysis

We track the parity of variables using the lattice:

For a = b + c, where a, b, and c are members of our new lattice, we define the transfer function:

$$f([a \to p_1, b \to p_2, c \to p_3]) = [a \to p_2 \oplus p_3, b \to p_2, c \to p_3]$$

Where p_1 , p_2 , and p_3 are elements of the base lattice.

2.1 Fill in the table for the \oplus operator

2.2 Finish the transfer function of a statement c = a

$$f([a \rightarrow p_1, b \rightarrow p_2, c \rightarrow p_3]) = [a \rightarrow ___, b \rightarrow ___, c \rightarrow __]$$

Suppose we are performing parity analysis on the following control flow graph:

2.3 What is the lattice point associated with the program point after the node c = a + b?

$$[a o ____$$
, $b o ____$, $c o ____]$

2.4 As a human, what is the most precise parity information you can determine for the program point after the node c = a + b?

$$[a \rightarrow ____, \quad b \rightarrow ____, \quad c \rightarrow ____]$$