Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Fall 2017

Test I Solutions

Mean 83.63 Median 86 Std. dev 12.03

I Regular Expressions and Finite-State Automata

For Questions 1, 2, and 3, let the alphabet ¥ = {a, b}. Let language L be the language of all strings
over X where any “a” character is followed by at least two “b” characters.

1. [5 points]: Write a regular expression that recognizes language L.

Solution: (abb|b)* Rubric:

e -1 for each category of string accepted but shouldn’t

e -1 for each category of string not accepted but should

2. [5 points]: Draw a state diagram of a nondeterministic finite-state automaton (NFA)
that recognizes language L. Remember to indicate starting and accepting states.

Solution: See Problem 3. All DFA are NFA. Alternative solution:

00
a b
€
start —{ 9o c @ b

Rubric:

e -2 for not accepting L for same reason as problem 1.

e -1 for each category of string not accepted by L or above Regex

3. [6 points]: Draw a state diagram of a deterministic finite-state automaton (DFA)
that recognizes language L. Note that you can either build a DFA directly from the English
description or convert your NFA into a DFA. Remember to indicate starting and accepting
states.

Solution:

Rubric:

e Same as problem 2

start H

IT Ambiguous Grammar

For each of the following grammars, state if it is ambiguous.

If the grammar is ambiguous, find a sentence in the language with two (or more) parse trees, and
show the two parse trees.

Every lowercase letter and symbol indicates a terminal, and every uppercase letter indicates a
non-terminal. Parsing starts at S.

Rubric: For each of the next four problems

e +5 If not ambiguous correctly stated

e +2 If ambiguous correctly stated, +1 for an ambiguous status, +1 for each correct parse tree.

4. [5 points]:

Sd
cS
cc

dd

N wn n
Ll

Solution: Ambiguous. Example: ccdd
S S
/\ /\
S d ¢ S
/\ /\
S d c S
/\ /\
c c d d

5. [5 points]:
T\ S

T && U

NS S w®
L 4d bl

Solution: Not ambiguous.

6. [5 points]:

N8N aY
L4414
“Q.
N

Solution: Not ambiguous.

7. [5 points]:

NN ®n®n®n
L4114

Solution: Ambiguous. Example: ¢(d)
S S
/\ VARN
S) c (S
I\ A

S S)
T T
d d

10

11

12

13

14

16

17

18

III Implementing Object-Orientation: Descriptors and Symbol
Tables

Use the diagram on the next page to answer the following three questions about this fragment of
code.

class BinaryOperation {
int left;
int right;
int eval(){ return 0; }

class Plus extends BinaryOperation {
int eval(O{ return left + right; }
b

class Divide extends BinaryOperation {
bool isDivisible;
int getRemainder (){
isDivisible = (left % right == 0);
return left % right;
}
int eval(){ return left/right; }

8. [7 points]: Complete the entries of the class descriptors for each class. Use an arrow
to connect the entry to a descriptor or symbol table where appropriate.

Solution: Rubric:

+1 for writing parents.

+1 for each parent arrow.

+1 for writing fields and +1 for their arrows

+1 for writing methods and +1 for their arrows

9. [7 points]: Complete the entries of the field symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.

Solution: See Below Rubric:

e +1 for writing parent with arrow.
o +2 for left field.
e +2 for right field.

e 12 for isDivisible field.

10. [7 points]: Complete the entries of the method symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.

Solution: Rubric:

e +1 for writing parents.
e +1 for each parent arrow.
e +1 for each eval

e +2 for getRemainder

Class Descriptors

BinaryOperation Plus Divide
<« | parent parent
fields e fields 1 fields
methods — methods = methods
Field Symbol Tables
BinaryOperation Plus Divide
— parent parent
» b T
left isDivisible
right
Method Symbol Tables
BinaryOperation Plus Divide
* - parent ;._ parent
eval eval eval

getRemainder

IV Control Flow and Short-Circuiting

Consider a programming language that includes a control flow construct called the “loop-with-test”
loop. A loop-with-test loop is written as follows:

loop {

// first body statements
} while test {

// second body statements
} repeat;

The loop-with-test loop runs the code in the first loop body, then checks the test condition. If the
condition evaluates to false, the loop ends; otherwise, the second loop body evaluates and
the loop repeats. Note that even if the test condition is always false, the first loop body will still
run once.

11. [10 points]: The semantics of the programming language says that a compiled pro-
gram should execute only as much as required to determine the value of a boolean condition.
The program evaluates a compound condition from left to right. Complete the control flow
graph on the next page that illustrates the control flow for evaluating the following state-
ments, including short-circuit logic for conditionals, assuming the compiler is not performing
any optimizations:

int a = 3;

int b = 4;

loop {
b —= a;
b =Db x 8;

} while ((b <= 62 && a <= 10) || a % 12 1= 11) {
a += 1;

} repeat;

10

Solution: Rubric:

e 9 relations -; +9 points.

e +1 for correct code written.

a = 3;

b = 4;

b —= a;
—

b=5b x 8;
triue

end

12. [10 points]: In the lecture, we discussed the implementation of procedures called
shortcircuit and destruct.

The procedure shortcircuit(c, t, f) generates the short-circuit control-flow representa-
tion for a conditional c. This procedure makes the control flow to node t if ¢ is true and flow
to node f if ¢ is false. The procedure returns the begin node for evaluating condition c.

The procedure destruct(n) generates the control-flow representation for structured code
represented by n. This procedure creates a control flow graph for n and returns the begin
and end nodes of the graph.

Recall that the pseudocode of destruct (n) for an if-else statement is as follows

If n is of the form if (c) { x1 } else { x2 } then

e = new nop;
(b1, el) = destruct(xl);

(b2, e2) = destruct(x2);

bc = shortcircuit(c, bl, b2);
next(el) = e;

next (e2) e;

return (bc, e);

Implement the pseudocode of destruct (n) for a loop-with-test loop:

If n is of the form loop { x1 } while (c) { x2 } repeat; then

Solution:

e = new nop;
(b1, el) = destruct(xl);
(b2, e2) = destruct(x2);

bc = shortcircuit(c, b2, e);
next(el) = bc;

next(e2) = bi;

return (bl, e);

Rubric:

+1 for nop.
— +1 for each destruct.

+1 for shortcircuit and 41 for correct arguments

+2 for each next (1 for statement, 1 for argument)

— +1 for return.

12

V Code Generation for Procedures

Consider the following two functions in Decaf and its corresponding assembly code generated by a
compliler.

int baz(int y) {
return y*y;

}

int foo() {
int x;
x = 3;
x += baz(x);
return Xx;

¥

The compiler follows the standard Linux x86-64 calling convention:

A caller procedure/function passes the first 6 arguments, from left to right, in %rdi,
Yorsi, %rdx, %rex, %r8, %r9. Any remaining arguments are passed on the stack, from
right to left.

The caller owns registers %rsp, %rbp, %rbx, and %r12-%r15. The callee procedure /function
is responsible for ensuring that these registers have the same value after the call as be-
fore the call. Note that %rsp and %rbp are the stack and base registers. Registers
Y%rsp, %rbp, %rbx, and %r12-%r15 are the callee-save registers.

The callee owns the remaining registers %rax, %rcx, %rdx, %rsi, %rdi, and %r8-%r11.
These registers can have different values after the call as before the call. These registers
are the caller-save registers.

The callee places its return value in %rax.

Rubric: For each of the next four questions

e +2 for correctly identifying correct or incorrecct.
e +4 for right justification (correct could be blank).

e +2 for good justification of the wrong answer

13

Which of the following possible generated code sequences for baz are correct in the sense that 1)
they compute the correct return value for baz and 2) they follow the the standard Linux x86-64
calling convention? Provide your answer by circling either Correct or Incorrect below each code
sequence. If incorrect, please specify why.

13. [6 points]:

1 pushq
2 movq
3 movq
4+ mulq
5 movq
6 Popq
7 retq

%rbp // push the value of Y%rbp to the stack
%rsp, %rbp // copy the value of Yrsp to %rbp

%rdi, %ri2 // copy the value of %rdi to %ri12

%rdi, %ri12 // mult the value of %rdi to %ri2

%rl2, Yrax // copy the value of %rsp to %rbp

%rbp // pop the top value from the stack to %rbp

// return from the function

Correct Incorrect

Solution: Incorrect. The method is editing a callee-save register %r12, without saving/restoring

its value.
14. [6
1 movqg
2 mulq
3 movq
4 Tretq

points]:

%rdi, -8(%rsp) // copy the value of %rdi to the stack
-8(%rsp), %rdi // mult the value on the stack to Jrdi
%rdi, JYrax // copy the value of %rdi to %rax

// return from the function

Correct Incorrect

Solution: Correct

Points were also awarded to a student identifying mulq shouldn’t use a stack location as the source
argument, deeming the above incorrect, though this wasn’t a criteria specified above.

14

Which of the following possible generated code sequences for foo are correct in the sense that 1)
they compute the correct return value for foo and 2) they follow the the standard Linux x86-64
calling convention? Provide your answer by circling either Correct or Incorrect below each code
sequence. If incorrect, please specify why.

15. [6 points]:

1 pushq
2 movq
3 movq
4 movq
5 call
6 addq
7 movq
8 Popq
9 retq

Solution: Incorrect.

%rbp

hrsp, %rbp
$3, %rit
%ri11, Yrdi
baz

%rax, %ril
%ri1, %rax
%rbp

Correct

// push the
// copy the
// copy the
// move the
// call the

value of %rbp to the stack
value of Jrsp to J%rbp
value 3 to Jriil

value of %ril to %rdi

baz method

// add the value of Y%rax to Y%riil

// move the

value of Y%rill to %rax

// pop the top value from the stack to %rbp
// return from the function

Incorrect

The method is editing a caller-save register before calling baz, therefore

having no guarantee that %rl11 will preserve the same value after the call.

16. [6 points]|:

1 movq
2 movq
3 call
4 movq
5 addq
6 movq
7 retq

$3, -8(%rsp)

baz

-8(%rsp), %ri0 //

%rax, %ri0
%r10, %rax

Correct

// copy 3 to the stack
-8(%rsp), %rdi // copy the

value on the stack to %rdi

copy the value on the stack to %ri10

// add the value or %rax to %r10
// copy the value of %rl0 to %rax
// return from the function

Incorrect

15

Solution: Incorrect. Edited part of the stack after the stack pointer before a method call, therefore
having no guarantee that the value in the address space will be preserved.

16

