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You have 50 minutes to finish this quiz.

Write your name and athena username on this cover sheet.

Some questions may be harder than others. Read them all through first and attack them
in the order that allows you to make the most progress. If you find a question ambiguous,
be sure to write down any assumptions you make. Be neat. If we can’t understand your
answer, we can’t give you credit!

This exam is open book and open laptop. Additionally, you may access the
course website, but aside from that you may NOT USE THE NETWORK.

Please do not write in the boxes below.

I (xx/15) II (xx/20) III (xx/21) IV (xx/20) V (xx/24) Total (xx/100)

Name:

Athena username:
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I Regular Expressions and Finite-State Automata

For Questions 1, 2, and 3, let the alphabet Σ = {a, b}. Let language L be the language of all strings
over Σ where any “a” character is followed by at least two “b” characters.

1. [5 points]: Write a regular expression that recognizes language L.

2. [5 points]: Draw a state diagram of a nondeterministic finite-state automaton (NFA)
that recognizes language L. Remember to indicate starting and accepting states.

3. [5 points]: Draw a state diagram of a deterministic finite-state automaton (DFA)
that recognizes language L. Note that you can either build a DFA directly from the English
description or convert your NFA into a DFA. Remember to indicate starting and accepting
states.
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II Ambiguous Grammar

For each of the following grammars, state if it is ambiguous.

If the grammar is ambiguous, find a sentence in the language with two (or more) parse trees, and
show the two parse trees.

Every lowercase letter and symbol indicates a terminal, and every uppercase letter indicates a
non-terminal. Parsing starts at S.

4. [5 points]:

S → S d

S → c S

S → c c

S → d d

5. [5 points]:

S → T || S
S → U

U → T && U

U → T

T → c
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6. [5 points]:

S → c ( T

T → S )

T → d , T

T → d )

7. [5 points]:

S → c ( S

S → S )

S → T

T → d , S

T → d
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III Implementing Object-Orientation: Descriptors and Symbol
Tables

Use the diagram on the next page to answer the following three questions about this fragment of
code.

1 class BinaryOperation {

2 int left;

3 int right;

4 int eval(){ return 0; }

5 }

6

7 class Plus extends BinaryOperation {

8 int eval(){ return left + right; }

9 }

10

11 class Divide extends BinaryOperation {

12 bool isDivisible;

13 int getRemainder(){

14 isDivisible = (left % right == 0);

15 return left % right;

16 }

17 int eval(){ return left/right; }

18 }

8. [7 points]: Complete the entries of the class descriptors for each class. Use an arrow
to connect the entry to a descriptor or symbol table where appropriate.

9. [7 points]: Complete the entries of the field symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.

10. [7 points]: Complete the entries of the method symbol tables for each class. Use an
arrow to connect the entry to a descriptor or symbol table where appropriate.
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IV Control Flow and Short-Circuiting

Consider a programming language that includes a control flow construct called the “loop-with-test”
loop. A loop-with-test loop is written as follows:

loop {

// first body statements

} while test {

// second body statements

} repeat;

The loop-with-test loop runs the code in the first loop body, then checks the test condition. If the
condition evaluates to false, the loop ends; otherwise, the second loop body evaluates and
the loop repeats. Note that even if the test condition is always false, the first loop body will still
run once.

11. [10 points]: The semantics of the programming language says that a compiled pro-
gram should execute only as much as required to determine the value of a boolean condition.
The program evaluates a compound condition from left to right. Complete the control flow
graph on the next page that illustrates the control flow for evaluating the following state-
ments, including short-circuit logic for conditionals, assuming the compiler is not performing
any optimizations:

int a = 3;

int b = 4;

loop {

b -= a;

b = b * 8;

} while ((b <= 62 && a <= 10) || a % 12 != 11) {

a += 1;

} repeat;
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a = 3;

b = 4;

end
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12. [10 points]: In the lecture, we discussed the implementation of procedures called
shortcircuit and destruct.

The procedure shortcircuit(c, t, f) generates the short-circuit control-flow representa-
tion for a conditional c. This procedure makes the control flow to node t if c is true and flow
to node f if c is false. The procedure returns the begin node for evaluating condition c.

The procedure destruct(n) generates the control-flow representation for structured code
represented by n. This procedure creates a control flow graph for n and returns the begin
and end nodes of the graph.

Recall that the pseudocode of destruct(n) for an if-else statement is as follows:

If n is of the form if (c) { x1 } else { x2 } then

e = new nop;

(b1, e1) = destruct(x1);

(b2, e2) = destruct(x2);

bc = shortcircuit(c, b1, b2);

next(e1) = e;

next(e2) = e;

return (bc, e);

Implement the pseudocode of destruct(n) for a loop-with-test loop:

If n is of the form loop { x1 } while (c) { x2 } repeat; then
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V Code Generation for Procedures

Consider the following two functions in Decaf and its corresponding assembly code generated by a
compliler.

int baz(int y) {

return y*y;

}

int foo() {

int x;

x = 3;

x += baz(x);

return x;

}

The compiler follows the standard Linux x86-64 calling convention:

A caller procedure/function passes the first 6 arguments, from left to right, in %rdi,
%rsi, %rdx, %rcx, %r8, %r9. Any remaining arguments are passed on the stack, from
right to left.

The caller owns registers %rsp, %rbp, %rbx, and %r12-%r15. The callee procedure/function
is responsible for ensuring that these registers have the same value after the call as be-
fore the call. Note that %rsp and %rbp are the stack and base registers. Registers
%rsp, %rbp, %rbx, and %r12-%r15 are the callee-save registers.

The callee owns the remaining registers %rax, %rcx, %rdx, %rsi, %rdi, and %r8-%r11.
These registers can have different values after the call as before the call. These registers
are the caller-save registers.

The callee places its return value in %rax.
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Which of the following possible generated code sequences for baz are correct in the sense that 1)
they compute the correct return value for baz and 2) they follow the the standard Linux x86-64
calling convention? Provide your answer by circling either Correct or Incorrect below each code
sequence. If incorrect, please specify why.

13. [6 points]:

1 pushq %rbp // push the value of %rbp to the stack

2 movq %rsp, %rbp // copy the value of %rsp to %rbp

3 movq %rdi, %r12 // copy the value of %rdi to %r12

4 mulq %rdi, %r12 // mult the value of %rdi to %r12

5 movq %r12, %rax // copy the value of %rsp to %rbp

6 popq %rbp // pop the top value from the stack to %rbp

7 retq // return from the function

Correct Incorrect

14. [6 points]:

1 movq %rdi, -8(%rsp) // copy the value of %rdi to the stack

2 mulq -8(%rsp), %rdi // mult the value on the stack to %rdi

3 movq %rdi, %rax // copy the value of %rdi to %rax

4 retq // return from the function

Correct Incorrect
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Which of the following possible generated code sequences for foo are correct in the sense that 1)
they compute the correct return value for foo and 2) they follow the the standard Linux x86-64
calling convention? Provide your answer by circling either Correct or Incorrect below each code
sequence. If incorrect, please specify why.

15. [6 points]:

1 pushq %rbp // push the value of %rbp to the stack

2 movq %rsp, %rbp // copy the value of %rsp to %rbp

3 movq $3, %r11 // copy the value 3 to %r11

4 movq %r11, %rdi // move the value of %r11 to %rdi

5 call baz // call the baz method

6 addq %rax, %r11 // add the value of %rax to %r11

7 movq %r11, %rax // move the value of %r11 to %rax

8 popq %rbp // pop the top value from the stack to %rbp

9 retq // return from the function

Correct Incorrect

16. [6 points]:

1 movq $3, -8(%rsp) // copy 3 to the stack

2 movq -8(%rsp), %rdi // copy the value on the stack to %rdi

3 call baz

4 movq -8(%rsp), %r10 // copy the value on the stack to %r10

5 addq %rax, %r10 // add the value or %rax to %r10

6 movq %r10, %rax // copy the value of %r10 to %rax

7 retq // return from the function

Correct Incorrect
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