
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.035 Fall 2018

Test I Solutions

UNKNOWN
Mean XX.X Median XX.X Std. dev XX.XX

1

I Regular Expressions and Finite-State Automata

For Questions 1 through 3, let the alphabet Σ = {., 0, 1}. Let language L be the language of all
strings over Σ where any “1” character is not followed by a “1” character.

1. [5 points]: Write a regular expression that recognizes language L.

Solution: (1.|10|.|0)∗1? Rubric:

– -1 for each category of string accepted but shouldn’t

– -1 for each category of string not accepted but should

2

2. [5 points]: Draw a state diagram of a nondeterministic finite-state automaton (NFA)
that recognizes language L. Remember to indicate starting and accepting states.

Solution: See Problem 4. All DFA are NFA. Alternative solution:

1start

2 3

16 17

4

8 9 10 11

12 13

14 15

5 6 7

18 19 20

ε

ε

1
ε

1 ε 0

ε

1 ε . ε

.

ε

0

ε

ε

ε

ε

ε

ε

ε

1

ε

ε

Rubric:

– -1 for not accepting L for same reason as problem 1.

– -1 for each category of string not accepted by L or above Regex

3

3. [5 points]: Draw a state diagram of a deterministic finite-state automaton (DFA)
that recognizes language L. Note that you can either build a DFA directly from the English
description or convert your NFA into a DFA. Remember to indicate starting and accepting
states.

Solution: Letting S1 = {1, 2, 4, 8, 12, 14, 16, 17, 19},
S2 = {3, 5, 6, 9, 10, 20},
S3 = {4, 8, 12, 14, 15, 17, 18, 19},
S4 = {4, 8, 12, 13, 14, 17, 18, 19, 20},
S5 = {4, 7, 8, 12, 14, 17, 18, 19, 20},
S6 = {4, 8, 11, 12, 14, 17, 18, 19, 20},
S7 = {5, 6, 9, 10},

S1start

S2

S3

S4

S5

S6

S7

1

.

0

0

.

.

0

1

.

0 1

1

.

0

1

.

0 .

0

Rubric:

– Same as problem 3

4

II Parsing

Consider the following grammar,

S → X $

X → Y + Y

Y → num

where $ indicates that the end of the input has been reached.

4. [5 points]: List the items generated by the grammar above.

Solution: Items:

S → · X $

S → X · $

X → · Y + Y

X → Y · + Y

X → Y + · Y
X → Y + Y ·
Y → · num

Y → num ·

Rubric:

– -0.6 for each item not on the list and for each extra item on the list.

5

5. [10 points]: Draw a DFA corresponding to the grammar above using the items
in problem 4. Please specify which items belong to each state.

Solution:

S1start

S2

S3

S4

S5 S6

X

Y

num

+ Y

num

S1 = {S → · X $, X → · Y + Y, Y → · num}
S2 = {S → X · $}
S3 = {X → Y · + Y }
S4 = {Y → num ·}
S5 = {X → Y + · Y, Y → · num}
S6 = {X → Y + Y ·}

Rubric:

– +5 for solution with num + num or Y + Y

– +10 for correct DFA

6

6. [10 points]: Complete the entries in the following parse table for the DFA in
problem 5.

Action Goto

State + num $ X Y

S1 err shift to S4 err goto S2 goto S3
S2 err err accept
S3 shift to S5 err err
S4 reduce(1) reduce(1) reduce(1)
S5 err shift to S4 err shift to S6
S6 reduce(3) reduce(3) reduce(3)

Rubric:

– +2 for each of correct states, reduces, accept/error, shifts, goto. Should correspond to
DFA in previous problem.

7. [5 points]: The string 5 + 6$ is parsed using a shift-reduce parser and the
grammar above. Draw the stack after the second reduce operation. Please mark where
the stack begins.

Stack

Y
+
Y

Rubric:

– Minus 1.6 for each symbol not on the stack in the proper location.

7

III Control Flow

Consider a programming language that includes a control flow construct called a “goto”. Given a
set of labels and statements, l1 : s1, l2 : s2, ...ln : sn, goto is written as follows:

li: si

if (c1) goto lj

// statements

lj: sj

if (c2) goto li

// statements

If the condition in the if statement is True then control flows to the line specified after the goto.
Otherwise, control flows to the following statement. Statements are then evaluated sequentially.
Note that the line specified by the goto may occur before or after the goto statement.

8. [10 points]: The semantics of the programming language say that a compiled
program should only evaluate expressions until the first match with the control expression’s
value is found. The program evaluates a compound condition from left to right. Recall that a
control flow graph consists of nodes representing maximal basic blocks and edges representing
control flow. No branches may come out of or into the middle of a basic block. Complete
the control flow graph on the next page that illustrates the control flow for evaluating the
following statements, including short-circuit logic for conditionals, assuming the compiler is
not performing any optimizations:

int n = 0;

int a = 3;

int b = 5;

l1: a = n-b;

a += 1;

if ((n % 2 == 0) || a == b) goto l1

b = n;

if (b > a) goto l2

b = a + 1;

l2: a = 1;

Solution: Rubric:

– 8 lines of added code in the correct blocks → +5 points.

– 8 added edges connected properly → +5 points.

– -1 for each non-maximal block (i.e., not including condition in previous block)

8

n = 10

a = 3

b = 5

a = n - b

a += 1

n % 2 == 0

a == b

b = n

b > a

b = a + 1

a = 1

end

False

True

False

True

False

True

9

IV Short Circuiting

9. [12 points]: In the lecture, we discussed the implementation of procedures called
destruct, next and shortcircuit.

The procedure destruct(n) generates the control-flow representation for structured code
represented by n. This procedure creates a control flow graph for n and returns the begin
and end nodes of the graph.

The procedure next(n1) = n2 allows you to specify n2 as the subsequent control-flow node
to be executed after n1.

The procedure shortcircuit(c, t, f) generates the short-circuit control-flow representa-
tion for a conditional c. This procedure makes the control flow to node t if c is true and flow
to node f if c is false. The procedure returns the begin node for evaluating condition c.

Recall that the pseudocode of destruct(n) for an if-else statement is as follows:

If n is of the form if (c) { x1 } else { x2 } then

e = new nop

(b1, e1) = destruct(x1)

(b2, e2) = destruct(x2)

bc = shortcircuit(c, b1, b2)

next(e1) = e

next(e2) = e

return (bc, e)

Recall that a NAND b evaluates to False if both a and b are True, and evaluates to True
otherwise. Also recall that a NOR b evaluates to True if both a and b are False and evaluates
to False otherwise. A ternary expression a?b:c evaluates b if a is True and evaluates c if a
is False. Implement the following functions using shortcircuit. You may find it helpful to
draw the control flow graph of each condition.

A. Solution:

bc2 = shortcircuit(c2, f, t)

bc1 = shortcircuit(c1, bc2, t)

return bc1

Rubric:

– +1.5 for each correct short-circuit, +0.5 for correct return, +0.5 for correct ordering
of statements

10

B. Solution:

bc2 = shortcircuit(c2, f, t)

bc1 = shortcircuit(c1, f, bc2)

return bc1

Rubric:

– +1.5 for each correct short-circuit, +0.5 for correct return, +0.5 for correct ordering
of statements

C. Solution:

bc2 = shortcircuit(c2, t, f)

bc3 = shortcircuit(c3, t, f)

bc1 = shortcircuit(c1, bc2, bc3)

return bc1

Rubric:

– +1 for each correct short-circuit, +0.5 for correct return, +0.5 for correct ordering
of statements

11

V Code Generation for Procedures

10. [8 points]:

You want to flatten the following lines into temps in your nascent compiler so your code
generation procedure is ready to write them out.

Linearize the following statements, with a new temporary for each intermediate and each
expression as a single 3-address operation.

a = x + y;
b = a * (c + d*3);

// started for you below

t1 = x

t2 = y

t3 = t1 + t2

a = t3

12

Solution:

t1 = x

t2 = y

t3 = t1 + t2

a = t3

t4 = a

t5 = c

t6 = d

t7 = 3

t8 = t7 * t6

t9 = t5 + t8

t10 = t4 * t9

b = t10

Rubric:

– -1 for each incorrect line

8 points total.

13

11. [4 points]: You’ve written your foo function in Decaf (with the added ability to
declare and set a variable’s initial value in one statement):

int foo(int x) {

int y = x;

y = 1024 / y;

return y + 1;

}

For which your (unoptimized) compiler outputs the following: 1

_foo:

pushq %rbp

movq %rsp, %rbp

movl $1024, %eax

movq %rdi, -8(%rbp)

movq -8(%rbp), %rdi

movq %rdi, -16(%rbp)

cqto

idivq -16(%rbp)

movq %rax, -16(%rbp)

movq -16(%rbp), %rax

movl %eax, %ecx

movl $1, %eax

addl %eax, %ecx

movl %ecx, %edi

popq %rbp

retq

Does the foo function obey standard calling convention by placing the return value in %edi?
Why or why not?

Solution: No. %edi is not any part of %rax.

Rubric:

– +2 for correct answer

– +2 for good argument

4 points total.

1You can generate this on your gcc equipped machine with:
gcc -O0 -c -fno-asynchronous-unwind-tables -fno-dwarf2-cfi-asm -save-temps codeGen.c && less codeGen.s

14

12. [8 points]: Here’s another function, bar.

void bar(int x) {

int y = x;

int a = y * y;

a = a / 2;

int z = a + y;

}

_bar:

pushq %rbp

movq %rsp, %rbp

movl $2, %eax

movl %edi, -4(%rbp)

movl -4(%rbp), %r12

movl %r12, -8(%rbp)

movl -8(%rbp), %r12

imull -8(%rbp), %r12

movl %r12, -12(%rbp)

movl -12(%rbp), %r12

movl %eax, -20(%rbp)

movl %r12, %eax

cltq

movl -20(%rbp), %edi

idivl %edi

movl %eax, -12(%rbp)

movl -12(%rbp), %eax

addl -8(%rbp), %eax

movl %eax, -16(%rbp)

retq

For each variable, designate whether it is found in a register or on the stack. If it is on the
stack, specify its offset on the stack from %rbp. Use the register or offset that the variable
has exclusive use of.

Solution:

Variable: a Stack offset: -12

Variable: x Stack offset: -4

Variable: y Stack offset: -8

Variable: z Stack offset: -16

Rubric: +2 for each correct response

8 points total.

15

OTHERWISE BLANK PAGE

16

APPENDIX I: BROWN CSC10330 X64 HANDOUT GUIDE

APPENDIX II: Notre Dame Introduction to X86 Assembly for Compiler Writers

17

