6.110 Quiz 1 (Spring 2024)

Before starting the quiz, write your name on this page and read the following instructions:

¢ There are 6 problems on this quiz. It is 15 pages long; make sure you have the whole quiz.
You will have 50 minutes in which to work on the problems. You will likely find some
problems easier than others; read all problems before beginning to work, and use your
time wisely.

* The quiz is worth 50 points total. The point breakdown each problem is given in the table
below, and is also printed with the problem. Some of the problems have several parts, so
make sure you do all of them!

¢ This is an open-book quiz. You may use a laptop to access anything on or directly linked
to from the course website, except for Godbolt. You may also use any handwritten notes.
You may not use Godbolt, the broader internet, any search engines, large language mod-
els, or other resources.

* Do all written work on the quiz itself. If you are running low on space, write on the back
of the quiz sheets and be sure to write (OVER) on the front side. It is to your advantage
to show your work — we will award partial credit for incorrect solutions that are headed
in the right direction. If you feel rushed, try to write a brief statement that captures key
ideas relevant to the solution of the problem.

Problem | Title Points

1 Conceptual Questions 6

2 Regular Languages 8

3 Parsing 12

4 Semantics 8

5 Linearizing Expressions 4

6 Code Generation 12

Total 50

Name 6.110 Staff
Kerberos 6.110-staff

Name Kerberos 2

1. Conceptual Questions [6 pts] (parts a—f)

State whether each of the following statements are true or false, by writing either T or F
in the blank space before each statement.

(a) All regular languages are also context-free languages.

True

(b) All NFAs with at most n states can be converted into DFAs with at most n? states.

False

(c) In the high-level IR discussed in lecture, when there are two nested scopes, the sym-
bol table for the inner scope contains a pointer to the symbol table for the outer
scope.

True

(d) When destructuring the high-level IR as discussed in lecture, if two statements end
up in the same basic block in the control-flow graph, the must have shared the same
scope in the high-level IR.

True

(e) Recall that short-circuit semantics evaluates only the minimal number of operands
required to determine the condition. Under short-circuit semantics, some evalua-
tions of the boolean exclusive-or operator (XOR) may evaluate only the first operand.

False

(f) In the x86 assembly calling convention defined in class, the caller must always save
all caller-saved registers on the stack before calling any procedure.

False

Name Kerberos 3

2. Regular Languages [8 pts] (parts a-b)
For this problem, we will work over the alphabet > = {A, B,C}. Let L be the language
consisting of all strings over X satisfying all of the following conditions:
¢ The letter immediately before the first occurrence of the letter B is an A.
* The letter immediately before the first occurrence of the letter C is a B.
¢ The letter C appears at least once in the string.

For example, the strings ABC and AABABBCCBA are in L, but the strings BC and ABAC
are not.

(a) [4 pts] Write a regular expression that recognizes the language L. You may only
use regular expressions of the form introduced in lecture (i.e. the only operations
that are allowed are concatenation, |, and)

Answer:

A(A|B)*BC(A|B|C)x
Other answers are also possible, such as AAx (B‘B(A|B)*B> C(A|B|C)x.

Name Kerberos

(b) [4pts] Give a DFA that recognizes the language L.

Answer:

Name Kerberos 5

3. Parsing [12 pts] (parts a—c)

This question involves parsing boolean expressions containing the ternary conditional
operator. The ternary (conditional) operator ?: is an operator that takes in three expressions.
Its value is equal to either of the latter two input expressions, chosen based on the value
of the first input expression. In other words, an expression

<condition> 7 <value-if-true> : <value-if-false>

evaluates to the value of <value-if-true> if <condition> evaluates to true, and evaluates
to the value of <value-if-false> if <condition> evaluates to false.

For example, executing the following code yields the following results:
bool b;

b = true ? false : true; // b = false
b = false 7 false : true; // b = true

Your teammate Melon Usk proposes the following grammar for expressions containing
the ternary operator that only involves booleans:

<expr> ::
<expr> ::

<expr> 7 <expr> : <expr>
true | false

Name Kerberos

(@) [4pts] Youimmediately notice that this grammar is ambiguous: the expression

true ? false : true 7 false : true

can be parsed in two ways. Complete the following table that shows the two parse
trees and the value that the expression evaluates to for each parse tree. One of the

parse trees has already been provided as an example.

For reference, here is Melon Usk’s proposed grammar:

<expr> ::
<expr> ::

true | false

<expr> 7 <expr> :

<expr>

Parse tree 1 (left-associative)

Parse tree 2 (right-associative)

expr expr
expr exXpr expr exXpr expr expr
RN RN
eXpr expr expr false true true false ©€Xpr €Xpr expr
true false true true false true

Evaluated value: true

Evaluated value: false

Name Kerberos 7

(b) [4 pts] You decide that the ternary operator should be right-associative, as in the
second parse tree from part (a). (This is also the case in most real programming
languages.) Propose a modification to Melon Usk’s proposed grammar so the only
valid parse trees are the ones that respect right-associativity.

For reference, here is Melon Usk’s proposed grammar:

<expr> ::= <expr> 7 <expr> : <expr>
<expr> ::= true | false
Answer:
<expr> ::= <bool> | <bool> 7 <expr> : <expr>

<bool> :: true | false

Name

Kerberos 8

(c) [4 pts] Your teammate Alyssa P. Hacker now wants to add the && (logical and)

operator to the grammar. The && operator should have a higher precedence (i.e.
binds more tightly) than the ternary operator. Namely, the following string

true ? false : true && false 7 true : false
should be interpreted as
(true ? false : ((true && false) 7?7 true : false))

Propose a new grammar that parses all boolean expressions containing the && op-
erator and the ternary operator and respects the precedence as described. For full
credit, the grammar should also respect right-associativity of the ternary operator,
as in part (b).

Answer:

<expr> ::
<term> ::
<bool> ::

<term> | <term> 7 <expr> : <expr>
<bool> && <term>
true | false

Name Kerberos 9

4. Semantics [8 pts] (parts a-b)

Consider the following program, which is from an object-oriented extension of Decaf that
uses the typing rules discussed in class:

class A { ... }

class B extends A {
cf(Aa){ ...}

}
class C extends A {
Bf(Bb){ ...}
}
void main() {
A a;
B b;
C c;
(%) ____

}

(@) [5 pts] For each of the following statements, indicate whether they are valid or
invalid at location (x).

Statement | Valid or invalid?
a =Db.f(c); valid
a=-c.f(a); invalid
b =b.f(b); invalid
b =c.f(b); valid
c =b.f(c); valid

Name Kerberos 10

(b) [3 pts] Fill in exactly one of each of a, b, and c in the blanks in the following ex-
pression so that it type-checks:

c . f(b).f(a)

Name Kerberos 11

5. Linearizing Expressions [4 pts]

Convert the following Decaf statement into a linearized form by writing an equivalent
list of simplified statements.

Original statement: a=bx* (c+d / (e -1);

We have already written some statements for you, and you may only add statements in
the form of
t; < t]' op fg,

where ty, t1, tp, ... are temporary variables, and op is a binary arithmetic operation.

// load variables
t1 <D
t < ¢
t ¢ d
fy <— e

t5 < £

// compute the expression (ADD YOUR STATEMENTS HERE)
te <ty + t3

by <t * tg

tg < tg - 15

to <ty / tg

// store the result

a<tp

Name Kerberos 12

6. Code generation [12 pts] (parts a-b)

Ben Bitdiddle writes the following Decaf program, which prints all positive numbers less
than 100 that are divisible by either 7 or 3.

void main() {

int a = 0;
while (a < 100) {
a += 1;

bool isDivisible = false;
if (@% 7==01]a%3==0)A
isDivisible = true;

}

if (!isDivisible) {
continue;

}

printf ("/d\n", a);

Name Kerberos 13

(@) [5pts] Draw a control flow graph for this program. Recall that boolean opera-
tions in Decaf have short-circuiting semantics and evaluate from left to right. Do not
perform any optimizations.

Answer:

a0

a < 100 exit

T

a<a + 1
isDivisible < false

isDivisib

lisDivisible

printf ("%d\n", a)

Name Kerberos 14

(b) [7 pts] For better code modularity, Ben Bitdiddle decides to move the logic of
checking whether a number is divisible to its own function. The new program is as
follows:

bool isDivisibleByThreeOrSeven(int num) {
// ... omitted for clarity ...
}

void main() {
int a = 0;
while (a < 100) {
a += 1;
if (isDivisibleByThreeOrSeven(a)) {
printf ("%d\n", a);
}

3

Ben Bitdiddle then implemented main in x86 assembly by hand. Ben’s implemen-
tation is on the last page of this quiz, but some parts of his code are missing, as
indicated by blanks. Fill in the blanks in Ben’s code. Please put your answers in the
table on this page.

The completed code should store all local variables on the stack, follow the standard
C calling convention, and keep the stack pointer 16-byte-aligned when calling other
procedures. Assume that isDivisibleByThreeOrSeven is already implemented, and
when main is called, the stack pointer is 16-byte-aligned.

Hint Your answer
@ This should be an immediate any multiple of $16
2 This is an instruction jge, je, or jns
_ (3) | Thisis a register or a memory location Jrdi
_ (4) | Thisis a register or a memory location hrax
(5 This is an instruction jne, j1, or jz
__(6) | Thisis a register or a memory location hrsi
@ This should be an immediate multiple of $16, same as (1)

Name Kerberos 15

Assembly code for Problem 6 (b)

The code on this page is for reference only. You may tear this page off, but you should
return it with the rest of your quiz at the end of the quiz. You may use this page as scratch
paper, but please indicate your final answers in the table in question 6 (b).

str:
.string "%d\n"
.align 16

main:
push hrbp
movq hrsp, %hrbp
subq (1) , %rsp

movq $0, -8(krbp) // int a = 0;
while_cond:
cmpq $100, -8(%rbp)

~(2) exit_loop
while_body:
addq $1, -8(%rbp)
if_cond:
movq -8(%rbp), (3)
call isDivisibleByThreeOrSeven
cmpq $1, @A)
(5) while_cond
if_body:

leaq str(%rip), %rdi
movq -8(%rbp), (6)

movq $0, JYrax
call printf
jmp while_cond
exit_loop:
addq (7) , Y%rsp
movq hrbp, %rsp
pop hrbp
movq $0, Yrax // return with exit code 0

ret

