6.110 Quiz 2 (Spring 2024)

Before starting the quiz, write your name on this page and read the following instructions:

¢ There are 6 problems on this quiz. It is 17 pages long; make sure you have the whole quiz.
You will have 50 minutes in which to work on the problems. You will likely find some
problems easier than others; read all problems before beginning to work, and use your
time wisely.

* The quiz is worth 50 points total. The point breakdown each problem is given in the table
below, and is also printed with the problem. Some of the problems have several parts, so
make sure you do all of them!

¢ This is an open-book quiz. You may use a laptop to access anything on or directly linked
to from the course website, except for Godbolt. You may also use any handwritten notes.
You may not use Godbolt, any compilers, the broader internet, any search engines, large
language models, or other resources.

* Do all written work on the quiz itself. If you are running low on space, write on the back
of the quiz sheets and be sure to write (OVER) on the front side. It is to your advantage
to show your work — we will award partial credit for incorrect solutions that are headed
in the right direction. If you feel rushed, try to write a brief statement that captures key
ideas relevant to the solution of the problem.

Problem | Title Points

1 Program Analysis 8

2 Register Allocation 10

3 Loop Analysis 4

4 Loop Optimizations 8

5 Parallelization 8

6 Bit-width Analysis 12

Total 50
Name
Kerberos

Name Kerberos 2

1. Program Analysis [8 pts] (parts a—c)

In this problem we will perform liveness analysis and dead code elimination. Remember
that a variable V is said to be live at point P if:

¢ there is a use U of V along some path starting at P.

¢ there is no redefinition of V along that path until U.

As taught in lecture, liveness analysis a backwards dataflow analysis performed using
the following transfer function for each basic block b:

IN[b] = USE[b] U (OUT|[b] — DEE[b]).

We will analyze the program represented by the following CFG, where block 1 is the entry
block and block 4 is the exit block.

Block 1
x = 0;
y=0;

Block 2
y < 10;

Block 3
y += 3
Z = X;
x = 5;

Block 4
X =y + 5;
print (x);

Name Kerberos 3

(a) [4 pts] Fill in the following table with the USE and DEEF sets for each basic block,
as well as the final values of the IN and OUT sets for each basic block. Write each set
as a set of variables.

As a starting point in this backwards analysis, we have filled in the row of the exit

block (Block 4) for you.
Basic block b USE|b] DEF|b] IN|D] OUT|p|
Block 1
Block 2
Block 3
Block 4 {v} {x} {v} @

Name Kerberos 4

(b) [2 pts] Based only on the results of your analysis in part (a), which statement(s)
constitute dead code and can be removed?

(c) [2pts] Assume that you have removed the statement(s) identified as dead in part
(b), and you perform liveness analysis again. Which additional statement(s) will be
identified as dead, if any?

Name Kerberos 5

2. Register Allocation [10 pts] (parts a—d)

In this problem, you will perform register allocation for the following CFG with def and
use statements:

1A: def x
1B: use x
//;;/// \\\E;\\

2A: def y 3A: def y
2B: use x 3B: use x
2C: def z 3C: def w
2D: use y 3D: use y
2E: def w 3E: def z

N

4A: use z
4B: use w
4C: def x
4D: use x

(@) [3pts] Identify the webs in the program. Write each web as the set of def and use
instructions that belong to the web, using the statement numbers given in the CFG.
We have given you web names x1, x2 corresponding to the variable x (and similarly
for the other variables). Use only as many webs as you need.

Web Instructions in web

x1

x2

z1

z2

wl

w2

Name Kerberos 6

(b) [3 pts] Draw an interference graph for the webs you identified. Each node in the
intereference graph should represent one web. There should be an edge between two
nodes if the two webs interfere. Label each node with the name of the corresponding
web.

Name Kerberos 7

(c) [2 pts] Describe an assignment of webs to registers using three general purpose
registers %r1, %r2, %r3.

(d) [2pts] Now suppose that we are only given two general purpose registers %r1 and
%r2. In order to reduce the number of registers needed, we will need to split the web
of a variable into two webs by spilling (storing) the variable to memory over some
portion of the program.

Suppose that you know that the true branch (from block 1 to block 2) is taken in 80%
of program executions. Which variable would you spill, where will you store and
load this variable from memory, and why?

Name Kerberos

3. Loop Analysis [4 pts] (parts a-b)

In the following control flow graph, A is the entry node and F is the exit node.

A

F

(a) [2pts] Draw the dominator tree for this control flow graph.

Name Kerberos 9

(b) [2 pts] For each loop in this control flow graph, give the (i) loop header, (ii) back
edge, and (iii) set of nodes within the loop by filling in the table below. Use only as
many rows of the table as you need.

Loop header Back edge Nodes in loop

Name Kerberos 10

4. Loop Optimizations [8 pts] (parts a—)

Consider the following program.

1 int a, b, c, d, e;

2 ¢ = 4;

3 while (c < 20) {

4 a =4,

5 c =c+ 2;

6 e = 5 % a;

7 b=3%c¢c+ 1;

8 d=2%*b-1;

9 printf(\d: %d, e: %d\n", d, e);
10 }

(@) [3 pts] For each variable within the program, state in the table below whether
the variable is an induction variable or not based on the criteria described in lecture.
For each induction variable, also indicate whether it is a base induction variable or a
derived induction variable, and give its triple (in the form (k, ¢, d)).

Is induction
. . 1o . . .
Variable variable? (T/F) Base or derived? Induction variable triple

Name Kerberos 11

(b) [1 pt] Which statements in the loop are loop-invariant? List the line numbers of
all statements within the loop that are loop-invariant.

(c) [4 pts] Rewrite the program after performing all the loop optimizations covered
in lecture: loop-invariant code motion, induction variable strength reduction, and
induction variable elimination. Eliminate as many induction variables as you can.

Partial credit will be given if you performed only some of the optimizations listed.

Name Kerberos 12

5. Parallelization [8 pts] (parts a—)

Consider the following loops, where A[i, j] refers to the element in the i row and jth
column in a two-dimensional array.

for (i1 =1; i <n; i+=1) {
for (j =0; j<=1; j+=1) {
Ali, j] = Ali -1, j - 1] + Ali -1, j];
}
}

(a) [4pts] Assumen = 5. In the grid below, circle the iteration space for the loops and
draw the dependence vectors. You may ignore out-of-range cases.

N
0 1 2 3 4
0
1
i 2
3

Name Kerberos 13

(b) [2 pts] List all distance vectors for these loops.

(c) [2pts] For each loop, state in the table below whether the loop can be parallelized
into a for-all loop or not.

Loop Can be parallelized? (T/F)

Outer loop (i loop)

Inner loop (j loop)

Name Kerberos 14

6. Bit-width Analysis [12 pts] (parts a—g)

We would like to design an analysis to determine the “bit-width” of each unsigned in-
teger variable. The bit-width of a nonnegative integer n the minimal number of bits
required to store 7, i.e. the smallest positive integer b such that 2° > n.

We define a base lattice (W, <) to keep track of bit-width for a single unsigned integer
variable as follows:
W= {011/2/' ' '}I

and <: P(W x W) is defined by
0<1<2<---

The element 0 represents an undefined variable (no information). Other numbers repre-
sent the fact that the variable may contain a value up to that many bits.

(a) [1pt] Define the join operator, V : W x W — W, such that it is consistent with <.
You may use the function max defined for integers.

Suppose our programs consist of three variables x, y, and z. We can define the actual
lattice (L, <r) as a function lattice, where each lattice element m € L is a mapping from
program variables to elements of the base lattice W. (In other words, elements of L look
like [x — w1,y — wy, z — w3, where wq, wy, w3 € W.)

(b) [1 pt] Define the order relation <; between elements of L in terms of the order
relation < between elements of W.

Name

Kerberos

15

(c) [4 pts] For each basic block B given below, write the most precise and sound

transfer function fg : L — L. We have provided examples in the first two rows.

Statements in B

Transfer function fp

x=2xy; fo(m) = mx = m(y) +1]
x = 6; x +=1; | fy(m) = mlx — 3]

X =y o+ 1 f(m) =

X =y xz; fFp(m) =

X =y +z; fFp(m) =

printf ("%d", x);

fp(m) =

Name Kerberos 16

Consider the following program.

if (...) {
X = 3;
y = 6;
} else {
y =3
X = 6;
}
zZ =X *Y;

(d) [1pt] Assuming you analyze this program using the forward data-flow analysis
algorithm, what is the final lattice element that this analysis computes at the program
point after the final statementz = x * y;?

(e) [1 pt] In the meet-over-paths solution for the above program, what is the lattice
element at the program point after the final statementz = x * y?

Name Kerberos 17

(f) [2pts] The base lattice is not complete. What issue could this possibly cause if one
were to use this in a real data-flow analysis? Provide a short, example program to
demonstrate this issue.

(g) [2pts] Bit-width analysis can be viewed as a weaker version of other analyses such
as maximum value analysis or integer range analysis. List one advantage and one
disadvantage of using bit-width analysis over other more powerful analyses.

Fun fact: You might wonder why we would ever use bit-width analysis. Bit-width analysis allows
us to select the best instructions and register types if we know we are dealing with values that are
guaranteed to be small. For example, in Decaf, you could use div instead of divq if you know
your operands are 32-bit integers rather than 64-bit!

