
6.110 Quiz 1 (Spring 2025)

Before starting the quiz, write your name on this page and read the following instructions:

• There are 5 problems on this quiz. It is 16 pages long; make sure you have the whole quiz.
You will have 50 minutes in which to work on the problems. You will likely find some
problems easier than others; read all problems before beginning to work, and use your
time wisely.

• The quiz is worth 50 points total. The point breakdown each problem is given in the table
below, and is also printed with the problem. Some of the problems have several parts, so
make sure you do all of them!

• This is an open-book quiz. You may use a laptop to access anything on or directly linked
to from the course website, except for Godbolt. You may also use any handwritten notes.
You may not use Godbolt, any compilers, the broader internet, any search engines, large
language models, or other resources.

• Do all written work on the quiz itself. If you are running low on space, write on the back
of the quiz sheets and be sure to write (OVER) on the front side. It is to your advantage
to show your work — we will award partial credit for incorrect solutions that are headed
in the right direction. If you feel rushed, try to write a brief statement that captures key
ideas relevant to the solution of the problem.

Problem Title Points

1 Regular Languages 8

2 Top-Down Parsing 9

3 Semantics 7

4 Control Flow Graphs 11

5 Code Generation 14

Feedback 1

Total 50

Name

MIT Email

1

Name Kerberos 2

1. Regular Languages [8 pts] (parts a–b)

The EECS department is re-numbering all of the classes in Course 6 and needs your help!
They would like to to write a grammar that can recognize valid course numbers, subject
to some new constraints.

For this problem, we will work over the alphabet Σ = {. (period), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Let L be the language consisting of all strings over Σ satisfying all of the following condi-
tions:

• The string must start with the character 6

• The string must contain exactly one period (.), and it must appear immediately after
the first 6

• The last character must be a 0, 1, or 2

• Additionally, a 9 cannot occur in the string unless there is a 3 somewhere before it

In this numbering system, 6.131415390, 6.2392, and 6.110 are in L, but 6.1190, 6.1357, 6.08,
and 6.1.02 are not.

(a) [4 pts] Write a regular expression that recognizes the language L. You may only
use regular expressions of the form introduced in lecture (i.e. the only operations
that are allowed are concatenation, |, and ∗). You may also use the range operation
to specify a range of numbers from [first-last] inclusive.

Name Kerberos 3

(b) [4 pts] Give a DFA that recognizes the language L. You may omit transitions to the
failure state.

Name Kerberos 4

2. Parsing [9 pts] (parts a–b)

Alyssa has created a small language called LIST for manipulating linked lists of numbers.

LIST is made of the following atomic (simple) expressions:

• The nil literal, [], which represents a linked list with no items

• The first ten natural numbers (0, 1, 2, ..., 9)

LIST consists of two operators:

• The cons operator, ::, is an operator that prepends a number to a linked list. The left
side (LHS) of the operator must be a number. The right side (RHS) of the operator
must be a linked list. The result of the cons operator is a linked list with lhs prepended
to rhs.

• The append operator, @, is an operator that appends the second list (l2) to the first list
(l1)

For example, executing the following code yields the following results:

[] # [] ← the empty list

1 :: 2 :: [] # [1, 2]

(1 :: 2 :: []) @ (3 :: []) # [1, 2, 3]

5 :: 6 # Error: RHS of :: operator must be a list

7 @ 8 # Error: Both sides of @ operator must be lists

Alyssa wants to write a compiler for LIST. Before she writes any code, she comes up with
the following (faulty) grammar:

<expr> ::= []

<expr> ::= <expr> :: <expr>

<expr> ::= <expr> @ <expr>

<expr> ::= (<expr>)

<expr> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Name Kerberos 5

(a) [4 pts] Given Alyssa’s grammar, the following expression will be ambiguous:

1 :: [] @ 2 :: []

Give two different parse trees for which the value that the tree evaluates to is a dif-
ferent value for each tree. If that expression evaluates to an error, write ERROR.

For reference, here is Alyssa’s faulty grammar:

<expr> ::= []

<expr> ::= <expr> :: <expr>

<expr> ::= <expr> @ <expr>

<expr> ::= (<expr>)

<expr> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Parse tree 1 Parse tree 2

Evaluated value: Evaluated value:

Name Kerberos 6

(b) [5 pts] Alyssa wants to rewrite her LIST grammar to be unambiguous. In addition
to being unambiguous, your grammar must also abide by the following rules:

• The cons operator (::) must have a higher precedence than the append operator
(@).

• The cons operator must be right-associative.
• The append operator must be left-associative.
• Both left-recursion and right-recursion are permitted.

For reference, here is Alyssa’s faulty grammar:

<expr> ::= []

<expr> ::= <expr> :: <expr>

<expr> ::= <expr> @ <expr>

<expr> ::= (<expr>)

<expr> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Name Kerberos 7

3. Semantics [7 pts] (parts a–c)

Consider the following program, which is from an object-oriented extension of Decaf that
uses the typing rules discussed in class:

class X { ... }

class Y extends X {

X foo(Z z) { ... }

}

class Z extends X {

Z foo(Y y) { ... }

}

void main() {

X x;

Y y;

Z z;

____(*)____

}

Class Hierarchy Diagram

X

Y Z

(a) [5 pts] For each of the following statements, indicate whether they are valid or
invalid at location (*). Note: Y and Z both inherit from X.

Statement Valid or invalid?

y = z.foo(y);

z = z.foo(x);

x = y.foo(y);

x = z.foo(y);

x = y.foo(x);

Name Kerberos 8

(b) [1 pt] Suppose Z now extends Y instead of X. Which previously invalid call(s) are
now valid?

(c) [1 pt] Ignoring the change in the last part, suppose now that Y were to extend Z

instead of X. Which previously invalid call(s) are now valid?

Name Kerberos 9

4. Control Flow Graphs [11 pts]

Louis Reasoner has just finished designing the control flow graph (CFG) IR for his De-
caf compiler, listed below. Assume this is for a machine that only uses unsigned (non-
negative) values.

Instruction Semantics

d = const <const> Load constant const to variable d

d = <op> s1, s2

Evaluate <op> with values of s1 and s2 and store the result in
variable d. s1 and s2 must be variables.

<op> can be: add, sub, mul, div, and, or, eq, neq, lt, gt

d = <op> s

Evaluate <op> with value of s and store the result in variable d.
s must be a variable.

<op> can be: not

jmp Unconditional jump. The destination is represented by an arrow.

br <cond> Conditional jump. cond is a variable.
The destination is represented by two arrows, labeled T and F.

Louis needs your help converting his AST to his new CFG IR.

(a) [3 pts] Linearize the expression x = 2 * (x + y / x) to a few lines of the IR listed
above. You may assume x and y are all local variables and can be used as is in your
CFG. You may also introduce temporaries t1, t2, . . . , tn as necessary.

Name Kerberos 10

(b) [2 pts] Alyssa reminded Louis that his IR doesn’t support arrays yet. To this end,
Louis added two instructions, ld arr and st arr. These two instructions are not
bounds checked.

Instruction Semantics

ld arr <arr>, <idx> Load index <idx> of array variable arr.

st arr <arr>, <val> Store <val> to array variable arr.

Now, for the following code:

if (i < n && A[i] != x) { // n is the size of A

x = A[i];

} else {

x = 0;

}

Louis’s compiler generates the following CFG.

Explain what could go wrong with the CFG above.

Name Kerberos 11

(c) [4 pts] Louis recalls something called a short-circuit logic operator that could avoid
the issue. Redraw Louis’s CFG to use short-circuiting.

(d) [2 pts] Louis now feels tempted to remove and and or instructions from his IR
because they seem “useless.” Do you agree with him? Explain with any reasonable
justification one way or the other.

Name Kerberos 12

5. Code Generation [14 pts] (parts a–c)

Ben Bitdiddle is looking to implement a new feature into Decaf. He wants to implement
a right shift operator, where the symbol >> is used to perform a right logical shift (un-
signed). An example of the use of this operator is below:

int a;

a = 0xF; // 0b1111

a = a >> 2; // a is equal to 0b0011;

We will explore how we can go about helping Ben add this feature to Decaf in a hypothet-
ical code generation scenario. For all x86 assembly code you may write, please follow the
standard C calling convention and use AT&T syntax. As a reminder, AT&T syntax has the
source operand is on the left, and the destination operand is on the right. Keep the stack
pointer 16-byte-aligned when calling other procedures. Assume that when functions are
called, the stack pointer is already 16-byte-aligned.

Name Kerberos 13

(a) [4 pts] Ben Bitdiddle wants to use this operator to create a Decaf function
right shift one(int num), which takes the number given and applies a right logi-
cal shift by one.

// Performs a right logical shift by 1 on the number

long right_shift_one(long num) {

return num >> 1L;

}

Ben pulls up a popular x86 reference website and finds the following assembly in-
struction, listed here in AT&T syntax for your reference:

Instruction Op/En 64-Bit Mode Leg Mode Description

SHR 1, r/m32 M1 Valid Valid Unsigned divide r/m32 by 2, once.

SHR 1, r/m64 M1 Valid N.E. Unsigned divide r/m64 by 2, once.

SHR CL, r/m32 MC Valid Valid Unsigned divide r/m32 by 2, CL times.

SHR CL, r/m64 MC Valid N.E. Unsigned divide r/m64 by 2, CL times.

SHR imm8, r/m32 MI Valid Valid Unsigned divide r/m32 by 2, imm8 times.

SHR imm8, r/m64 MI Valid N.E. Unsigned divide r/m64 by 2, imm8 times.

For this table, r/m32 are 32 bit register or memory locations, r/m64 are 64 bit register or memory
locations, and imm8 are 8 bit immediate values.

Examine the assembly code below, and write (around 2-5 lines) that completes
this function. (Hint: Recall that the first argument to a function is passed in register %rdi,
and the return value is passed in register %rax)

right_shift_one:

pushq %rbp

movq %rsp, %rbp

popq %rbp

ret

Name Kerberos 14

(b) [4 pts] Now, Ben wants to use this function to implement a simple algorithm that
counts the number of binary ones in a number.

// Counts the number of binary ones in a number. num must be positive

long count_ones(long num){

long count;

count = 0L;

while (num != 0L) {

count = count + (num % 2L);

num = right_shift_one(num);

}

return count;

}

Draw the control flow graph of his function, which is written in Decaf. You may use
the form given in Lecture 6 (Codegen), and quote the Decaf statements/expressions
literally. Be sure to annotate the edges with branch conditions as appropriate:

Name Kerberos 15

(c) [6 pts] Ben Bitdiddle takes the CFG that you drew and hand-wrote the x86 code
that corresponds to the function. However, some parts of it are missing! Fill in the
blanks in Ben’s code that will make his x86 code functionally correct and also follow
all calling conventions. Assume right shift one is implemented correctly.

Please put your final answers in the table on the next page. The table provides a
helpful hints for what types may go in the blanks. You may use this page for scratch
work.

count_ones:

allocate space on the stack

pushq %rbp

movq %rsp, %rbp

subq (1) , %rsp

movq %rdi, -16(%rbp) # num

movq $0, -8(%rbp) # count

.while_header:

num != 0L

cmpq (2)
(3) .exit

.while_body:

num % 2

movq $0, %rdx

movq -16(%rbp), %rax

movq $2, %rdi

idivq %rdi

remainder stored in %rdx

addq %rdx, (4)
function call to right_shift_one

move num to parameter 1

movq (5)
call right_shift_one

move result to num

movq %rax, -16(%rbp)

(6)
.exit:

move count to return register

movq -8(%rbp), %rax

restore the stack

addq (1) , %rsp

movq %rbp, %rsp

pop %rbp

ret

Name Kerberos 16

Final answers for question 5(c):

Hint Your answer

(1) An immediate

(2) An immediate, followed by
a register or memory location

(3) An instruction

(4) A register/memory location

(5) Two register/memory locations

(6) A full instruction

[1pt] Feelsbox, or tell us a concept that you struggled with that you would like the
TAs to go over again.

