
6.110 Quiz 2 (Spring 2025)

Before starting the quiz, write your name on this page and read the following instructions:

• There are 7 problems on this quiz. It is 18 pages long; make sure you have the whole quiz.
You will have 50 minutes in which to work on the problems. You will likely find some
problems easier than others; read all problems before beginning to work, and use your
time wisely.

• The quiz is worth 50 points total. The point breakdown each problem is given in the table
below, and is also printed with the problem. Some of the problems have several parts, so
make sure you do all of them!

• This is an open-book quiz. You may use a laptop to access anything on or directly linked
to from the course website, except for Godbolt. You may also use any handwritten notes.
You may not use Godbolt, any compilers, the broader internet, any search engines, large
language models, or other resources.

• Do all written work on the quiz itself. If you are running low on space, write on the back
of the quiz sheets and be sure to write (OVER) on the front side. It is to your advantage
to show your work — we will award partial credit for incorrect solutions that are headed
in the right direction. If you feel rushed, try to write a brief statement that captures key
ideas relevant to the solution of the problem.

Problem Title Points

1 Dataflow Analysis 6

2 Register Allocation 13

3 Loop Analysis 6

4 Loop Optimization 6

5 Sign Information 10

6 Peephole Optimizations 8

7 Feedback 1

Total 50

Name 6.110 Staff

MIT Email 6.110-staff@mit.edu

1

Name Kerberos 2

1. Dataflow Analysis [6 pts]

Reaching definitions analysis determines which definitions of variable x reach any par-
ticular use of variable x. More formally, for any variable x, we say a definition D of x
“reaches” the use U if:

• U reads the value x
• There exists some path from D to U that does not redefine x.

Reaching definitions analysis is a forwards dataflow analysis performed using the fol-
lowing dataflow equations for each basic block b:

IN[b] =
⋃

p∈pred(b)
OUT[p] (1)

OUT[b] = (IN[b] \ KILL[b]) ∪ GEN[b] (2)

In this question, we will analyze the following program, where B1 is the entry block and
B4 is the exit block.

Name Kerberos 3

(a) [2 pts] Fill in the following table with the GEN and KILL sets for each basic block.
Write each set as a set of labels. Not all labels on the CFG have a corresponding
definition. As a starting point, we have filled in the first row (B1) for you.

Block GEN[B] KILL[B]

B1 {1, 2, 3} {6, 7, 8}

B2

{} {}

B3

{5, 6, 7} {1, 3, 8, 9}

B4

{8, 9, 10} {1, 5, 7}

(b) [3 pts] For the following question, possible IN and OUT sets for block B3 is pro-
vided. For each possibility, first determine whether or not those sets could be a valid
fixed-point solution to the dataflow analysis for the entire control graph. If not, say
which dataflow equation, either (1) or (2), is violated.

IN[B3] OUT[B3] Valid/Invalid? Violation ((1) or (2))

{1, 2, 3, 5, 6, 7} {2, 5, 6, 7} Valid N/A

{1, 2, 3, 5, 6, 7, 10} {2, 5, 6, 7, 10} Valid N/A

{2, 3, 5, 6, 7} {2, 5, 6, 7} Invalid (1)

{1, 2, 3, 5, 6, 7, 9} {2, 5, 6, 7, 9} Invalid (2)

Note. The dataflow equations on page 2 of the exam are numbered (1) and (2).

Name Kerberos 4

(c) [1 pt] Would instruction 8 (a = c) be affected by copy propagation assuming no
other optimizations? Explain why or why not.

Answer:
No, it would not be affected by copy propagation since the use of c in B4 may
either refer to definition 3 or 6. Recall that a variable can only be copy propagated
if (1) it has exactly one reaching definition and (2) that reaching definition is a
copy instruction.

Name Kerberos 5

2. Register Allocation [13 pts]

In this problem, you will perform register allocation for the following CFG:

(a) [5 pts] Identify all webs in the CFG above. Write each def/use as “<label>:
def/use <variable>”. A web has been given to you as an example.

• Within each web, order the def/uses by ascending label number.
• For webs of the same variable, order by the first label in ascending order.

There may be more rows than needed.

Name Kerberos 6

Web # Variable def-uses

1 t 4: def t, 5: use t

2 a

1: def a, 8: use a, 9: def a

3 a

4 b

7: def b, 8: use b, 9: use b

5 b

2: def b, 7: use b, A: def b, B: use b

6 c

8: def c, A: use c

7 c

8 i

3: def i, 4: use i, 6: def i, 6: use i

9 i

Name Kerberos 7

(b) [2 pts] Draw the interference graph of the webs above. Assume that within a single
instruction, the def is sequenced after all uses. You may assume any order for uses
in a single instruction. (Hint: it may be helpful to 1. draw the webs over the CFG
and 2. start by considering webs that don’t interfere)

Answer:

1

3

2 6

5

4

(c) [2 pts] From the interference graph, at least how many registers do we need?

Answer:

4

Name Kerberos 8

(d) [3 pts] Now let’s explore another way to do register allocation.

i. Assume we allocate registers to variables instead of webs;
ii. Assume instructions are ordered as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B;

iii. Assume a variable will be stored in the same register from its first use/def to the
last use/def according to the order above.

For each variable, draw a line segment in the figure below from its first def/use to
its last def/use.

a
b
c
t
i

1 2 3 4 5 6 7 8 9 A B
instruction number

v
a
ri
a
b
le

(e) [1 pt] What is the minimum number of registers needed by this register allocator?

Answer:

4

Name Kerberos 9

3. Loop Analysis [6 pts]

Consider the following CFG. A is the entry block. Left arrows represent false branches,
and right arrows represent true branches.

A

BC

DE

(a) [1 pt] Draw the dominator tree of this CFG.

Answer:

A

BC

DE

Name Kerberos 10

(b) [3 pts] Identify the loops of this CFG. (Hint: there are at least 3)

Loop Header Loop Nodes Loop Back-Edge(s)

A A, B (B, A)

C C, D (D, C)

D D (D, D)

A A, C, D, E (E, A)

(c) [2 pts] Is it possible to write a Decaf function that could have this CFG? (Note: you
must provide reasoning about your answer to receive any credit)

Answer:
No, as E is outside of the A-B loop, and we do not have goto in Decaf to jump all
the way back.

Name Kerberos 11

4. Loop Optimizations [6 pts]

Consider the following Decaf snippet.

int foo(int p) {

int w, x, y, z;

x = 0;

while (x < 10) {

z = 4 * x + 6;

y = p * p + 100;

w += foo(z) + y;

x += 2;

}

return w;

}

(a) [2 pts] Identify any Base Induction Variables and Derived Induction Variables.

Variable Base/Derived? Induction Variable Triple

x Base (x, 1, 0)

z Derived (x, 4, 6)

Name Kerberos 12

(b) [4 pts] Rewrite the program after performing all the loop optimizations covered
in lecture: loop-invariant code motion, induction variable strength reduction, and
induction variable elimination. Eliminate as many induction variables as you can.

Answer:
int foo(int p) {

int w, z, y;

z = 6;

y = p * p + 100;

while (z < 46) {

w += foo(z) + y;

z += 8;

}

return w;

}

Name Kerberos 13

5. Sign Information [10 pts]

Suppose we want to keep track of sign information for integer variables. Each variable
can be either negative (Neg), zero (Zero), or positive (Pos). We represent the set of pos-
sible signs of a variable as a 3-bit vector, where the most significant bit (MSB) indicates
whether the variable could be negative, the middle bit indicates if the variable could be
zero, and the least significant bit (LSB) indicates if the variable could be positive. For
example:

• Pos only → 001

• Zero only → 010

• Neg or Zero → 110

(a) [2 pts] Draw the Hasse diagram for this lattice and define the join operator as an
arithmetic or boolean operation. Hint: it should be a very simple operator.

Answer:

000

100 010 001

110 101 011

111

The join operator is boolean or:

A ∨ B = A|B

Name Kerberos 14

(b) [4 pts] We define the lattice L for program variables x, y, and z, Each element m ∈ L
is a mapping:

m : {x, y, z} → SignSets

where SignSets are subsets of {Neg, Zero, Pos}. Complete the following transfer
function information:

Operation m(x)

x = -1 100

x = 0 010

x = 1 001

x = y m(y)

Additionally, complete the partial table for addition: if x and y have known signs,
what is z = x + y?

x

y
100 010 001

100 100 100 111

010 100 010 001

001 111 001 001

110 100 110 111

111 111 111 111

Name Kerberos 15

Consider the following CFG where if (cond1) marks the entry block:

if (cond1)

a = -1;

x = 0;

x = x + a;

a = 0;

x = 1;

x = x + a;

y = x

m1

if (cond2)

y = y + 0;

y = y + 1;

y = y + 1;

y = y + 0;

z = y + 1

m2

(c) [1 pt] m1 is the mapping that the dataflow analysis computes for the program point
aftery = x. What is m1(y)?

Answer:

m(y) = 101

(d) [1 pt] m2 is the mapping that the dataflow analysis computes for the program point
after z = y + 1. What is m2(z)?

Answer:

m(z) = 111

(e) [2 pts] How could one use sign set information to optimize code?

Answer:

Can be used to optimize conditionals for > 0, < 0 jumps (many valid answers)

Name Kerberos 16

6. Peephole Optimizations [8 pts]

Ben Bitdiddle has written a poorly optimized x86 code generator. Help him identify op-
portunities to make his assembly more performant. Make sure your optimized assembly
is semantically identical to the left-hand side, and that it runs in fewer cycles, given the
latency table below. Write your assembly code in AT&T syntax (source operand on the
left), and make sure it is syntactically correct (i.e, an assembler would accept it). Assume
a single-core, single-thread CPU executes one instruction at a time and in order.

Ben Bitdiddle downloads a latency table from a popular x86 reference website for Intel
Skylake-X CPUs, which is the processor family on the 6.110 Derby Server:

Operands Latency Operands Latency Operands Latency

MOVQ r/i,r 1 ADDQ SUBQ r/i,r 1 SHLQ i,r 1

MOVQ r/i,m 2 ADDQ SUBQ m,r 5 SHLQ i,m 2

CMOVcc r,r 1 CMPQ r/i,r 1 SHRQ i,r 1

XCHGQ r,r 2 CMPQ r/i,m 1 SHRQ i,m 2

PUSHQ r 3 IMULQ r/m 3 SARQ i,r 1

POPQ r 2 IMULQ r,r 3 SARQ i,m 2

IDIVQ r 95

INCQ DECQ r 1

INCQ DECQ m 3

Key: Operands: i (immediate), r (register), m (memory location).

Name Kerberos 17

Assembly Optimized Assembly

movq %r10, %rcx

addq %r8, %r10

movq %r10, %rcx

addq $1, %r10

movq %r10, %rcx

addq %r8, %r10

addq $1, %r10

movq %r10, %rcx

movq $8, %r11

idivq %r11

movq %rax, %r10

movq $0, %rdx

movq %r11, %rax

shrq $3, %rax

movq $0, %rdx

movq $32, %r11

imulq %r11, %r10
shlq $5, %r10

shlq $2, %rax

addq %rcx, %rax

movq (%rax), %rcx

movq (%rcx, %rax, 4), %rcx

Name Kerberos 18

7. Feedback [1 pt]

(a) [1 pt] What is one thing you studied that did not show up on the exam?

Answer:

Anything valid.

(b) [0 pts] [Optional]: Any other feedback for the course staff? (or feelzbox)

Answer:

Anything valid.

