
6.110 Computer
Language Engineering 
Recitation 1: Project overview/phase 1 
 
February 7, 2025 

1 

Before we get started… 
We’d appreciate your feedback! Here are some
ways to give us feedback: 

•Weekly check-in forms 
•Piazza posts (can be fully anonymous) 

2 

Announcements ←  
Weekly updates 
Project overview 
Phase 1 details 

3 

Re-lectures 
•Re-lectures will be Wednesdays 4-6pm, starting
this upcoming Wednesday. 
•Re-lectures will be recorded. 
•Location TBD, look for an announcement on
Piazza by Monday. 

4 

Office Hours 
https://6110-sp25.github.io/office-hours 
● Debugging help not guaranteed — best effort 
● Come if you want comments on your design 
● Different TAs comfortable w/ different languages 
● Rooms TBD, will be posted on Piazza as soon as

we get room confirmations 
● Please come to office hours early (not last

minute) — everyone is better off 
5 

https://6110-sp25.github.io/office-hours

Announcements 
Weekly updates ←  
Project overview 
Phase 1 details 

6 

Fresh off the press 
Project phase 1: due Friday, February 21 
Mini-quiz 1 and Weekly Check-in 2: due
Thursday, February 13 
If you haven’t submitted Weekly Check-in 1
yet, please do so ASAP. 

•We need your GitHub account to create your phase 1
repository. 
•Future assignments must be submitted on time! 

7 

Check-in 1: Colors 

8 

Check-in 1: Languages 

9 

Coming up soon… Week 2 
Mon
2/10

Tue
2/11

Wed
2/12

Thu
2/13

Fri
2/14

Lecture
Top-down
parsing

Lecture  
 

Lecture  
 

Lecture Recitation
Scanning and
parsing a toy
language

    Re-lecture
for Week 1
lectures

Due: Mini-quiz,
weekly check-in 

 

10 

Announcements 
Weekly updates 
Project overview ← 
Phase 1 details 

11 

Project overview 

import printf;

void main() {
…

???
Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

12 

Project overview 

According to
all known laws
of aviation,
there is no…

???
Language 1 Language 2

De acuerdo con
todas las leyes
conocidas
de la …

13 

Project overview 

import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representation

14 

Project overview 
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)
 
Phase 2. Does it make
sense? (semantics)

15 

Project overview 
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)
 
Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

16 

Project overview 
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)
 
Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

17 

 
 
 

Phase 5. How can we  
make the output code faster?  

Project overview 
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)
 
Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Phase 4. What can we
learn about the
program? (dataflow
analysis)

18 

Things we specify for you: 
•Input language (Decaf) 
•Output language (x86-64 assembly) 
•General design (scanning → parsing → semantic
checking → code generation) 
•Command line interface 
 

19 

Features of Decaf 
•Imperative language, watered down version of C
— name stands for Decaffeinated C.  
•Follows C semantics and calling convention. 
•Types: int, long, bool. 
•Operations (arithmetic / boolean / comparison) 
•Constant-sized arrays 
•Functions 

20 

Example Decaf program 
import printf;
int array[100];
void main() {
 int i, sum;
 sum = 0;
 for (i = 0; i < len(array); i++) {
 sum += i;
 }
 printf("%d\n", sum);
}

21 

Command line interface 
• ./build.sh builds your compiler 
• ./run.sh filename [options] runs your compiler,
must support the following options: 
-t | --target <stage> Specify compilation stage: scan, parse,

inter, or assembly

-o | --output <outname> Write output to the specified file name. (If
blank, output to stdout)

-O | --opt [optimizations,…] Perform the listed optimizations. all means all
optimizations, -optname removes optname. 

-d | --debug Prints debug information

22 

Announcements 
Weekly updates 
Project overview 
Phase 1 details ←  

23 

Phase 1 overview 
Goal: have a working program that can determine
whether each input Decaf code is syntactically
valid or not. 

•We split this into two subtasks: scanning and
parsing.  
•What this phase doesn’t cover: semantics. Things like
type checking, bounds checking, etc. will be done in
the next phase. 

24 

Scanner 
Input: Decaf code, essentially a string 
Output: A list of tokens 
Example: 
 
 
  print("Hello, World!"); →

▪ print
▪ (
▪ "Hello, World!"
▪)
▪ ;

25 

Scanner specifications 
When running ./run.sh <filename> –t scan on
a lexically valid input file:  

•Exit with return code 0 (OK) 
•Outputs tokens, one per line.  
•For identifiers  
and literals,  
also output  
the token type: 

IDENTIFIER print
(
STRINGLITERAL "Hello, World!"
)
;

26 

Scanner specifications 
When running ./run.sh <filename> –t scan on
a lexically invalid input file:  

•Exit with a nonzero return code (i.e. error) 
The autograder doesn’t check the output, but it’s
nice to output an error message. 

27 

Parser 
Input: A list of tokens 
Output: A parse tree, which is a data structure
that encapsulates the syntactic structure of the
program 
Example:  INTLITERAL 4

+
INTLITERAL 5
*
INTLITERAL 3

→

+

4 *

5 3
28 

Parser specifications 
When running ./run.sh <filename> –t scan on
a syntactically valid input file:  

•Exits with return code 0 (OK) 
•Produce no output 

You can decide how you want to implement your
parse trees 

29 

Parser specifications 
When running ./run.sh <filename> –t scan on
a syntactically invalid input file:  

•Exit with nonzero return code (i.e. error) 
Again, the autograder doesn’t check the output,
but it’s nice to output an error message. 

30 

Submission and grading 
Phase 1 is worth 5% of the overall grade, due
Friday, February 21.  
Three items to be submitted on Gradescope 

•Code submission (autograded) 
•Scanner tests: 2% 
•Parser tests: 2% 

•Short report (1-2 paragraphs): 1% (due 1 day after
deadline so that you can focus on code up to the
end) 
•LLM questionnaire: 0% (due 3 days after deadline) 

31 

Getting started 
•You should have received an invite to join the
course organization (6110-sp25).  
•We created a repo <your-kerb>-phase1 for you. 
•If you don’t have access to it, let us know ASAP. 

•Make sure to accept the invite for both the
organization and the repo! 

32 

Getting started 
•We have starting skeletons for Java, Scala, Rust, and
Typescript. 
•The skeletons come with a build system and a barebones

implementation of the CLI. 
•To use the skeletons, follow the instructions on the Project

Skeletons page on the course website. 
•You’re also welcome to start from scratch if you’d like
to use a different build system or language (but let us
know so we can support it on the autograder!) 

33 

https://6110-sp24.github.io/skeletons
https://6110-sp24.github.io/skeletons

Testing 
Unit tests: the skeletons come with unit-testing
frameworks. (ex. Mocha for Typescript) 

• It’s good practice to write your own unit tests for each
function/module you’re writing. The scanner/parser can get
pretty complex, and the test cases we provide are only
end-to-end. 

End-to-end tests: we provide public test cases in the
public-tests repository. 

•You should write your own script to run these tests 

34 

Testing 
You can also submit your code on Gradescope to see
feedback on the tests (you’ll see the test names and
whether you passed or failed them). 

•We suggest doing this if you edit ./build.sh or ./run.sh to
verify that the autograder can successfully build your code. 
•There is no rate limit, but try not to overuse this.  
•Try to use this only for verification purposes, and don’t

submit every single commit, for example.  
•Don’t blindly try to increase your # of private tests passed. 

35 

Words of advice 
Start early! 

•The project deadlines in this class are spaced out, so it’s
easy to feel like you have a lot of time ... until you don’t. 

You’ll face a lot of design decisions. 
•E.g.: do you want to use the same token data types for both

the scanner output and the parse tree? 
•A lot of of the time, it’s usually okay either way. But if you

made a choice and got really stuck, maybe step back and
reconsider design choices. 

36 

About languages 
“Can we use X language for our compilers?” 
● YES! As long as it conforms to the command

line interface 
● BUT— 

○ Real-life engineering 
isn’t about using the 
coolest language 

37 

Non-technical considerations 
● Are your team all onboard? 
● Are TAs familiar with it? 

○ TAs only officially support Rust, Java, Scala &
TypeScript 

● *Are LLMs familiar with it? 

38 

Technical considerations 
● Strong type system is good 
● Memory safety is a plus 

○ We strongly advise against C/C++ 
● Abstraction power 
● Style consistency 
● Hackability* 
● Performance is not that important  
● Don’t be religious; be pragmatic 

39 

Check-in 1: Languages 

40 

Words of advice 
Start with a subset of the Decaf grammar. 

•Dealing with the whole grammar at once can be intimidating.
Try picking a self-contained subset of it (ex. arithmetic
expressions only, or pure expressions only) 

Keep source location information. 
•While we don’t require this in Phase 1, this will be required

in the next phase, and it’ll also make debugging a lot easier. 

41 

Words of advice 
Consider using existing libraries to help. 

•Regex libraries are allowed and very helpful for scanning. 
• If you’re interested, also check out scanner/parser

generators. Our general advice is use these if you already
knew the language well, it might be a good learning
experience to use them. 
• Examples: ANTLR, tree-sitter, Pest, etc.  

• If you are not familiar with the language, we strongly
recommend handwriting the parser to gain concrete
experience 

42 

Words of advice 
The course staff is here to help! 

•Come to office hours or ask on Piazza! 
•We know that this project can feel pretty intimidating.  
•We can give you suggestions on how to start, and we will try

to help you debug issues with your parser and scanner. 
• (Note that we give you a lot of freedom on how to approach

the project, and so we might not be able to give very specific
guidance in some cases.)  

 

43 

