
Recitation 3: Parser Generators Demo 
 
February 14, 2025 

6.110 Computer 
Language Engineering 



Announcements and updates ←  
Parser generator demo 



Upcoming deadlines 
•Mini-quiz 2 and Weekly Check-in 2 have been 
released, due Thursday, February 20 
 
•Project phase 1 is due Friday, February 21  

•No late submissions! 
 

•Project phase 2 will be released on the same day, due 
two weeks after (Friday, March 7)  
 

• Team submission form due Wednesday, February 19 



Coming up soon… Week 3 
Mon
2/17

Tue
2/18

Wed
2/19

Thu
2/20

Fri
2/21

Holiday
President’s Day 

Lecture 
(11am) 
Monday 
Schedule 

Lecture  
 

Lecture Recitation
ASTs and tips for 
Phase 2

    Due: Team 
Submission

Due: Mini-quiz, 
weekly check-in 

Due: Project 
phase 1



Announcements and updates 
Parser generator demo ← 



Why not use a parser generator?  
• Generally slower than a hand written recursive 

descent parser 
 

• May be difficult to specify correctly for more 
complicated languages 
 
• Teams have successfully used modern parser 

generators to specify Decaf, which is relatively 
simple 



Why use a parser generator? 
• Generates “correct” code 

 
• Good for prototyping 

 
• Lexer and parser errors come for free 

 
• No need to deal with a hacked parse tree: directly go 

to the abstract syntax tree 



ANTLR4 
• “ANother Tool for Language Recognition” 

 
• Industry standard for parser generation 

 
• LL(*) - Parses left-to-right, leftmost derivation, 

infinite* lookahead, adaptive resolution of left 
recursion 
 

• One grammar, many language targets 
 



List of ANTLR4 Targets 
• Java (and other JVM languages like Scala) 
• TypeScript 
• Go 
• C++ 
• C# 
• Python (we’ll use this for our demo today) 
• Swift 
• PHP 
• Dart 

If you use Rust… use Tree-sitter 



Parser generator demo 
Code available at: 
https://github.com/6110-sp25/recitation3 
 

 

https://github.com/6110-sp25/recitation3

