
Recitation 5: Introduction to SSA 
 
Feb 28, 2025 

6.110 Computer
Language Engineering 

Weekly updates ←  
Introduction to SSA 

[https://xkcd.com/297/]
 

https://xkcd.com/297/

Coming up soon… 
Mon
3/3

Tue
3/4

Wed
3/5

Thu
3/6

Fri
3/7

No class! 😋 
(plz work on ur phase 2) 

R6 
x86 

R7 
Phase 3 

Phase 2 DUE 

Weekly updates 
Project phase 2 is due Friday, Mar 7  
We are grading your phase 1 reports and repo 
Expect individualized feedbacks on your code 

• Code style suggestions 
• Comment on design choices 
• Correctness bugs that will bite you in the long run 

Attention ANTLR users 
Especially if ChatGPT wrote your grammar … 
and/or it looks like this: 
expr: ... |
 expr bin_op expr |
 ... ;

bin_op: arith_op | rel_op | eq_op | cond_op;

Your grammar does NOT handle precedence 

WORKING
COMPILER 

YOU? 

PRECEDENCE / 
??? 

Moral of the story 

Please check LLM output  

Weekly updates 
Introduction to SSA ← 

Note: This is completely optional!  
You are not required to implement SSA in your
compiler, nor is implementing it worth any extra
credit. 
Today’s content focuses on theory (unlike
previous recitations), and is based on chapters
1-3 of the SSA book*. 
 
* [SSA-based Compiler Design, edited by Rastello and Tichadou,  
draft available at https://pfalcon.github.io/ssabook/latest/book-full.pdf]  

https://pfalcon.github.io/ssabook/latest/book-full.pdf

What is SSA? 

Static Single-Assignment 

Static Single-Assignment 

Is a property of the program code
(i.e. static property)

Static Single-Assignment 

Is a property of the program code
(i.e. static property)

Every variable is assigned to exactly once

What is SSA? 
•A form of low-level IR in which every variable is
defined exactly once 
•Ways to think about this: 
•Variables are immutable 
•Every appearance of the same variable has the same
value 
•“SSA is Functional Programming” [Appel 1998] 

SSA in basic blocks 
Basic block  

a ← 1 
b ← a + 1 
a ← a + b
c ← a + 1 
a ← b + c 

SSA in basic blocks 
Basic block  

a ← 1 
b ← a + 1 
a ← a + b
c ← a + 1 
a ← b + c 

Many definitions and uses of a

SSA in basic blocks 
Basic block  

a ← 1 
b ← a + 1 
a ← a + b
c ← a + 1 
a ← b + c 

Many definitions and uses of a

These two expressions  
have different values!  

SSA in basic blocks 
Basic block  

a ← 1 
b ← a + 1 
a ← a + b 
c ← a + 1 
a ← b + c 

Let’s color-code the definitions 
and uses of a 

SSA in basic blocks 
Basic block  

a1 ← 1 
b1 ← a1 + 1 
a2 ← a1 + b1
c1 ← a2 + 1 
a3 ← b1 + c1

Let’s color-code the definitions 
and uses of a 
… and rename them to distinct 
names  

SSA in basic blocks 
Basic block  

a1 ← 1 
b1 ← a1 + 1 
a2 ← a1 + b1
c1 ← a2 + 1 
a3 ← b1 + c1

Let’s color-code the definitions 
and uses of a 
… and rename them to distinct 
names  

This is now in SSA form!
So far, so good

SSA in CFGs 
a ← 5

a ← a + 3
(b == 1)?

a ← a + ba ← a + 2

print(a)

Let’s write each basic
block in SSA form

SSA in CFGs 
a1 ← 5

a2 ← a1 + 3
(b1 == 1)?

a ← a + ba ← a + 2

print(a)

Let’s write each basic
block in SSA form

SSA in CFGs 
a1 ← 5

a2 ← a1 + 3
(b1 == 1)?

a ← a + ba3 ← a2 + 2

print(a)

Let’s write each basic
block in SSA form

SSA in CFGs 
a1 ← 5

a2 ← a1 + 3
(b1 == 1)?

a4 ← a2 + b1a3 ← a2 + 2

print(a)

Let’s write each basic
block in SSA form

SSA in CFGs 
a1 ← 5

a2 ← a1 + 3
(b1 == 1)?

a4 ← a2 + b1a3 ← a2 + 2

print(a)
Oops, what do we do
here?

Let’s write each basic
block in SSA form

SSA in CFGs 
a1 ← 5

a2 ← a1 + 3
(b1 == 1)?

a4 ← a2 + b1a3 ← a2 + 2

a5 ← φ(a3,a4)
print(a5)

Merge values using  
phi-function
 
φ(a3,a4) means select
either a3 or a4 based on
the control flow path
taken

Summary: what is SSA? 
•A form of low-level IR in which every variable is
defined exactly once 
•Control-flow graph with every assignment gets a
unique name 
•Use phi-function to deal with merge points 

Why is SSA useful? 

phase 3 
50% extra

work 

phase 4-5 
>>50% less

work 

φ 

SSA makes program analysis 

simpler and faster 

FAQ for optimizers 
Upon seeing a variable assignment (definition) 
● Where might this definition be used? 
● Given a def, find reachable uses 
Upon seeing a variable use 
● Where might the values come from? 
● Given a use, find reaching defs 

Def → use 
Where might this definition be used? 
● If there’s no use, don’t need the assignment! 

(Liveness Analysis / Dead Code Elimination) 
● If use is far away, maybe defer the assignment 

(Code Motion) 
● Put immediate / frequently used vars in registers 

(Register Allocation) 

Use → def 
Where might the values come from? 
● If only one def & is constant, replace use with const. 

(Constant Propagation) 
● If only one def & is copy (x=y), replace use x with y 

(Copy Propagation) 
● If value is loop variable (x=2*i), simplify (i++; x+=2) 

(Induction Variable / Scalar Evolution) 

Reaching definitions 
How do we know that the result
of an assignment (definition)
may be used at [use site]? 
Without SSA, need to do analysis 
With SSA, just check if the
definition and the use are for the
same variable 

Available expressions 
Recall: in general, an expression x+y is available
at a point p if  
1. every path from the initial node to p must

evaluate x+y before reaching p,  
2. and there are no assignments to x or y after

the evaluation but before p. 
With SSA, no need to worry about 2.  

Liveness 
Recall: in general, 
• A variable v is live at point p if  
•v is used along some path starting at p, and  
•no definition of v along the path before the use 

With SSA, 
A variable v is live at its definition point if it has no
uses 

•In some sense, the work is done during the
conversion to SSA instead…  
•but this work is done once and helps for many
different program analyses 

•SSA factors out one key aspect of program
analysis: def-use chains 

Def-use chains 
•It’s slow to propagate
dataflow information
through every node 
•Optimization: compute
def-use chains, which link
each definition to its uses.
This speeds up
propagation of information! 

 
[Figure 2.1a in SSA book]

Def-use chains 
•Problem: number of
def-use chains can be
quadratic  
•N defs, N uses, each use
can be from any def  
→ N2 def-use chains! 

 

[Figure 2.1a in SSA book]

Def-use chains 
•Problem: number of
def-use chains can be
quadratic  
•N defs, N uses, each use
can be from any def  
→ N2 def-use chains! 
•With SSA, each use can
only be from one def 
→ O(N) def-use chains! 
 

 
[Figure 2.1b in SSA book]

How to implement SSA? 

Implementing SSA 
Two main tasks: 
•Converting into SSA form (construction) 
•Converting out of SSA form (destruction) 

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

a ← 5
b ← 3 – a
(b == 1)?

a ← a + b
a ← a – 1
b ← b + 1
(a == b)?

print(a)
[This section is based on Harvard CS153 slides:
https://groups.seas.harvard.edu/courses/cs153/2018fa/l
ectures/Lec23-SSA.pdf]

https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

a ← 5
b ← 3 – a
(b == 1)?

a ← φ(a)
b ← φ(b)
a ← a + b

a ← φ(a,a)
b ← φ(b,b)
a ← a – 1
b ← b + 1
(a == b)?

a ← φ(a,a)
b ← φ(b,b)
print(a)

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

2. Convert each basic block
to SSA, and propagate
the last definition to
φ-nodes of successor
blocks 

a ← 5
b ← 3 – a
(b == 1)?

a ← φ(a)
b ← φ(b)
a ← a + b

a ← φ(a,a)
b ← φ(b,b)
a ← a – 1
b ← b + 1
(a == b)?

a ← φ(a,a)
b ← φ(b,b)
print(a)

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

2. Convert each basic block
to SSA, and propagate
the last definition to
φ-nodes of successor
blocks 

a1 ← 5
b1 ← 3 – a1
(b1 == 1)?

a ← φ(a1)
b ← φ(b1)
a ← a + b

a ← φ(a1,a)
b ← φ(b1,b)
a ← a – 1
b ← b + 1
(a == b)?

a ← φ(a,a)
b ← φ(b,b)
print(a)

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

2. Convert each basic block
to SSA, and propagate
the last definition to
φ-nodes of successor
blocks 

a1 ← 5
b1 ← 3 – a1
(b1 == 1)?

a ← φ(a1)
b ← φ(b1)
a ← a + b

a2 ← φ(a1,a3)
b2 ← φ(b1,b3)
a3 ← a2 – 1
b3 ← b2 + 1
(a3 == b3)?

a ← φ(a3,a)
b ← φ(b3,b)
print(a)

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

2. Convert each basic block
to SSA, and propagate
the last definition to
φ-nodes of successor
blocks 

a1 ← 5
b1 ← 3 – a1
(b1 == 1)?

a4 ← φ(a1)
b4 ← φ(b1)
a5 ← a4 + b4

a2 ← φ(a1,a3)
b2 ← φ(b1,b3)
a3 ← a2 – 1
b3 ← b2 + 1
(a3 == b3)?

a ← φ(a3,a5)
b ← φ(b3,b4)
print(a)

SSA construction 
Naive method:  
1. Add φ-nodes at the

beginning of every basic
block  

2. Convert each basic block
to SSA, and propagate
the last definition to
φ-nodes of successor
blocks 

a1 ← 5
b1 ← 3 – a1
(b1 == 1)?

a4 ← φ(a1)
b4 ← φ(b1)
a5 ← a4 + b4

a2 ← φ(a1,a3)
b2 ← φ(b1,b3)
a3 ← a2 – 1
b3 ← b2 + 1
(a3 == b3)?

a6 ← φ(a3,a5)
b5 ← φ(b3,b4)
print(a6)

SSA construction 
Issue:  
too many φ-nodes  
 
To reduce φ-nodes, can run
copy propagation and dead
code elimination afterwards 

a1 ← 5
b1 ← 3 – a1
(b1 == 1)?

a4 ← φ(a1)
b4 ← φ(b1)
a5 ← a4 + b4

a2 ← φ(a1,a3)
b2 ← φ(b1,b3)
a3 ← a2 – 1
b3 ← b2 + 1
(a3 == b3)?

a ← φ(a3,a5)
b ← φ(b3,b4)
print(a)

SSA construction, but better 
Standard method: 
1. Compute the dominator tree 
2. For each assignment of x (in basic block B), compute

the iterated dominance frontier DF+(B)  
and put φ-nodes for x at every block in DF+(B).  

3. Rename variables in each basic block, where blocks
are traversed in DFS order in dominator tree 

Domination 
In a control-flow graph: 
•A node n dominates a node m if

every path from the entry block
to m goes through n. 
 

A

CB

D

FE

D dominates D, E, F, G

G

Domination 
In a control-flow graph: 
•A node n dominates a node m if

every path from the entry block
to m goes through n. 
• If m ≠ n, then n strictly dominates

m.  
 

A

CB

D

FE

D strictly dominates E, F, G

G

Domination 
In a control-flow graph: 
•A node n dominates a node m if

every path from the entry block
to m goes through n. 
• If m ≠ n, then n strictly dominates

m.  
• If there are no nodes x such that n

strictly dominates x and x strictly
dominates m, then n immediately
dominates m.  

 

A

CB

D

FE

D immediately dominates E, F

G

Dominator tree 
•Each node (except the entry

node) has a unique immediate
dominator 

 
 

A

CB

D

FE

The immediate dominator of D
is A 

G

Dominator tree 
•Each node (except the entry

node) has a unique immediate
dominator 
•The dominator tree is the tree

where there is an edge n to m if n
immediately dominates m 
 

A

CB

D

FE

Dominator tree

G

Dominance frontier 
The dominance frontier DF(n)  
of a node n is the border of the
CFG region dominated by n.  
(To be precise, this is the set of
nodes m such that n dominates an
immediate predecessor of m but
not m.) 

 

The dominance frontier  
of D is {B} 

A

CB

D

FE

G
Region dominated  
by D

Dominance frontier 
The dominance frontier DF(n)  
of a node n is the border of the
CFG region dominated by n.  
(To be precise, this is the set of
nodes m such that n dominates an
immediate predecessor of m but
not m.) 
The iterated dominance frontier
DF+(n) is the limit of the sequence 

DF0(n) = {n}, 
DFi+1(n) = DF({n} ∪ DFi(n)) 

 

DF+(D) = {B, D} 

A

CB

D

FE

G
Region dominated  
by D

Region
dominated  
by B

SSA construction, but better 
Standard method: 
1. Compute the dominator tree 
2. For each assignment of x (in basic block B), compute

the  
iterated dominance frontier DF+(B)  
and put φ-nodes for x at every block in DF+(B).  

3. Rename variables in each basic block, where blocks
are traversed in DFS order in dominator tree 

SSA destruction 
Simplest method: add
assignments to the end of
predecessor blocks of
φ-nodes  

a1 ← 5
a2 ← a1 + 3
(b1 == 1)?

a4 ← a2 + b1a3 ← a2 + 2

a5 ← φ(a3,a4)
print(a5)

SSA destruction 
Simplest method: add
assignments to the end of
predecessor blocks of
φ-nodes  
This creates extra copies,
but a coalescing register
allocator can deal with it 
(Caveat: cycles) 

a1 ← 5
a2 ← a1 + 3
(b1 == 1)?

a4 ← a2 + b1
a5 ← a4

a3 ← a2 + 2
a5 ← a3

print(a5)

That’s all for today! 
If you want to learn more, consider reading
the SSA book*! 
 
* [SSA-based Compiler Design, edited by Rastello and Tichadou,  
draft available at https://pfalcon.github.io/ssabook/latest/book-full.pdf]  

https://pfalcon.github.io/ssabook/latest/book-full.pdf

