
Recitation 6: CFG construction 
 
Mar 5, 2025 

6.110 Computer 
Language Engineering 



Weekly updates ←  
Introduction to CFG construction 



Weekly updates 
Phase 2 is due Friday, Mar 7 (aka TOMORROW) 
Quiz 1 will be held next Friday, Mar 14 
● 11 AM, 32-123 
● More logistics on Piazza 
● Review session next Wednesday 
 
 



Coming up soon… 
Mon
3/10

Tue
3/11

Wed
3/12

Thu
3/13

Fri
3/14

No class! 😋 
Quiz 1 
review 

No 
class  Quiz 1 



Weekly updates 
Introduction to CFG construction ← 



Overview 
Many of you asked about CFG and IR 
We’ll cover in this recitation how to build IR and 
CFG from an AST 
x86 tutorial merged with tomorrow’s recitation 



Parse tree vs AST? 
A parse tree may contain irrelevant details 
● Parentheses, whitespace and comments 
AST is more “abstract” 
● “1 + 2”, “1+((2))”, “1 + /*yo*/ (2)” 

have different parse trees but the same AST 



Parse tree vs AST? 



Parse tree vs AST? 
A parse tree may contain irrelevant details 
● Parentheses, whitespace and comments 
AST is more “abstract” 
● “1 + 2”, “1+((2))”, “1 + /*yo*/ (2)” 

have different parse trees but the same AST 
You only need a parse tree for Phase 1 
You really should have an AST for Phase 2 



IR vs AST vs CFG vs SSA… 🤔  
IR: umbrella term for any internal representation 
A compiler typically has multiple IRs  



IR vs AST vs CFG vs SSA… 🤔  
IR: umbrella term for any internal representation 
A compiler typically has multiple IRs 
● AST + symbol table: good for semantic analysis 

○ You only need this for Phase 2 
● CFG: good for codegen & optimization 

○ You should have this for Phase 3 
○ SSA: a flavor of CFG 



IR vs AST vs CFG vs SSA… 🤔  
IR: umbrella term for any internal representation 
A compiler typically has multiple IRs 
● AST + symbol table: good for semantic analysis 
● CFG: good for codegen & optimization 
Do I need symbol table for CFG? 
● CFGs are local to each method 
● Global symbol table to track global variables and 

methods 



Three ingredients for CFG IR 
Variables / virtual registers 
Instructions  
● Takes a fixed number of operands 
● Easy* conversion to assembly 
Basic blocks 
● Sequence of inst. where control flow never diverges 
● Jump and branching only allowed at the end 



Demo: AST → CFG 
A small subset of Python 
Focus on three parts 
● Expression 
● Conditional 
● Statements 


