
6.110 Computer
Language Engineering 
Recitation 7: x86 Introduction 
 
March 7th, 2025 

 
Weekly Updates ← 
x86 Quickstart 

Weekly updates 
•Hopefully everyone is almost done Phase 2 
•Weekly miniquiz and check-in released, due
Thursday, March 13  
•Project Phase 3 is released Saturday, March 8  
•Quiz 1 is on Friday, March 14  
• Covers up to Codegen lectures 
• Practice material will be posted soon 
• Quiz review during lecture time on March 12 

Coming up soon… Week 5 
Mon
3/10

Tue
3/11

Wed
3/12

Thu
3/13

Fri
3/14

No Lecture No Lecture  
 

Quiz 1
Review
Session 
 

No Lecture Quiz 1

 
Weekly Updates  
x86 Quickstart ← 

Project overview 
import printf;

void main() {
…

Decaf source file x86-64 assembly

push %rbp
mov %rsp, %rbp
…

Internal representationPhase 1. Does it have
the right structure?
(syntax)
 
Phase 2. Does it make
sense? (semantics)

Phase 3
code generation

Why Now? 
•For phase 2 you were asked to implement a high-level
intermediate representation (IR) for semantic checking 
 
•You may find now that you will want to create an even
lower-level IR, or a Control Flow Graph representation 
 
•The design of your IR needs to be informed by the
limitations of your code generator and x86 assembly 

x86 Assembly 
•Low-level programming language used to communicate
with hardware 
 
•Can do (mostly) what you want, but there’s no safety net 
 
•A reminder that a processor a digital circuit, and
hardware is required to perform operations (6.004) 

x86 ISA 
•An ISA is the set of instructions that software can issue to
hardware implementations (such as a CPU) 
 
•Standardized by various hardware manufacturers 
 
•x86 is old, the first version (16-bit) was created in 1978 
 
•Widely adopted despite its age 

x86 Assembly 
Decaf Program 

Compiler 

Processor 

Instruction Set
Architecture (ISA)

x86_64

RISC-V

AArch64 (ARM)

Coming from RISC-V… 
•x86 is considered a CISC (complex instruction set
computer) ISA 
 
•It has considerably more instruction
complexity/diversity than RISC (reduced instruction set
computer) ISAs 
 
•As such, you will be able to perform more complex
operations in one assembly instruction than in RISC-V 

Another note about x86 
•x86 has two syntax styles 
•Intel syntax and AT&T/NASM syntax 
•We’ll use AT&T syntax because it is the default in Linux 
• The chief difference is the ordering of the operands 
• Keep this in mind if you consult Intel manuals  

(flip the operands in your head) 

Decaf  AT&T Syntax  Intel Syntax 

int a = 100; 
int b = a; 
 

movq $100, -8(%rbp) 
movq -8(%rbp), -16(%rbp) 
 

mov [rbp-8], 100 
mov [rbp-16], [rbp-8] 

A Tour Through x86 
•In general, instructions have the following format: 
 

instr ret 
instr argument call function 
instr src, dst addq $10, %rax 
instr aux, src, dst imulq $2, %rcx, %rdx 

Registers 
• 16 registers available, some with “special” uses! 
 
• %rax, %rdx used in arithmetic operations 
 
• %rbp, %rsp (base pointer, stack pointer) 
 
• 10 are caller-saved, 6 are callee-saved 

Registers 
• Can be further operated on as a 32 bit register, 16 bit

register, or two 8 bit registers 
• Integers in Decaf are 64-bit, we will usually use the

entire register but GCC/Clang may optimize register
usage 

64-bit  rax 

32-bit          eax 

16-bit              ax 

8-bit              ah  al 

Calling Conventions 
•Some registers are caller-saved registers, which means
that you must save them before a call instruction 
 
•Other registers are callee-saved registers, which means
that you do not need to save them before a call
instruction 
 
•Useful to optimize how you allocate registers (phase 5),
but for now, focus on a working compiler 

Arguments 
•First 6 arguments are passed in registers 
 
•%rdi, %rsi, %rdx, %rcx, %r8, %r9 
 
•Any further arguments are passed on the stack 
 
•This is a convention. You are the compiler-writer, do what
you want (except when calling external functions) 

Let’s Talk Instructions 
Broadly, there are a few categories of instructions: 
• Data transfer 
• Control flow 
• Arithmetic/Logic/Shift 

Data Transfer 
In general, you can transfer data: 
• Between two registers (fastest) 
• From an immediate to a memory location or register 
• Between a register and a memory location (slowest) 
 
Note that virtually no instructions allow memory
locations as both operands  

Examples 
movq $1, %rax (move 1 to rax) 
movq %rax, %rcx (move from rax to rcx) 
movq -8(%rbp), %rax (move from rbp-8 to rax) 
movq %rax, -8(%rsp) (move from rax to rbp-8) 
 
movq -8(%rbp), -16(%rbp) (illegal) 

Performance Considerations 
There are multiple places to store variables and data: 
• Globally (slowest) 
• On the stack 
• In registers (fastest) 

Considerations for your IR 
• How will you represent variables/arrays? How will you

assign them to be global or on the stack? 
 
• Eventually, you will want certain variables in registers

(phase 5), how will you handle this? 
 

• How will you represent constants? On the stack or
globally? 

Control Flow 
Differs significantly from RISC-V 
• There are no instructions that do a compare and jump in one

instruction: 
• jmp - unconditional jump 

 
• je/jl/jle/jg/jge/jne - examples of conditional jumps 

 
• You must execute the cmpq instruction to set a special

“flag” register 
 

• This flag register determines the behavior of the various
jump instructions 
 

 

Flag Register 
• A 32 bit EFLAGS register is used to store state about the

CPU (and the result of certain math operations) 
 

• Many of these are used for determining whether jumps,
conditional moves, conditional set bytes will execute 
 

• Most arithmetic or logic instructions will clobber
(reset) these flag registers 

 

Flag Register 

Image Credit: Source 

https://www.nayuki.io/page/a-fundamental-introduction-to-x86-assembly-programming#4-flags-register-and-comparisons

Example 
int a = 1;

int b = 0;

if (a < 5) {

b = 1;

} else {

b = 2;

}

Example 
movq $1, %rax
movq $0, %rcx
cmpq $5, %rax
jl _if_body
jge _else_body
_if_body:

movq $1, %rcx
jmp _exit

_else_body:
movq $2, %rcx

_exit:
(...)

int a = 1;

int b = 0;

if (a < 5) {

b = 1;

} else {

b = 2;

}

Example 
movq $1, %rax
movq $0, %rcx
cmpq $5, %rax
jl _if_body
jge _else_body
_if_body:

movq $1, %rcx
jmp _exit

_else_body:
movq $2, %rcx

_exit:
(...)

int a = 1;

int b = 0;

if (a < 5) {

b = 1;

} else {

b = 2;

}

Example 
movq $1, %rax
movq $0, %rcx
cmpq $5, %rax
jl _if_body
jge _else_body
_if_body:

movq $1, %rcx
jmp _exit

_else_body:
movq $2, %rcx

_exit:
(...)

int a = 1;

int b = 0;

if (a < 5) {

b = 1;

} else {

b = 2;

}

Example 
movq $1, %rax
movq $0, %rcx
cmpq $5, %rax
jl _if_body
jge _else_body
_if_body:

movq $1, %rcx
jmp _exit

_else_body:
movq $2, %rcx

_exit:
(...)

int a = 1;

int b = 0;

if (a < 5) {

b = 1;

} else {

b = 2;

}

Considerations for your IR 
• How might you structure your IR so that you can

accommodate this cmp before jump requirement? 
 

• How might you take advantage of fallthrough? Think
about how you would make blocks easy to move around
in your representation 

 Hint: This will also be important for phase 4! 

Doing Math 
• Think like a circuit designer (6.004) 
• How might you accomplish math operations? 

 
• Which operations are expensive? 

addq - 1 cycle 
subq - 1 cycle 
imulq - 3 cycles 
idivq - 42-95 cycles (yikes!) 
(on Skylake-X CPUs) 

Doing Math 
• Some operations require operands to be placed in

specific registers 
 

• idivq takes the 128-bit value stored in rdx:rax, divides
it by the argument register 
 

• The quotient is placed in rax, the remainder in rdx
• This destroys whatever was stored there! 

 
• Most math clobbers flag registers 

 

Doing Math 
• Some multiplications and divisions can be made cheap

if they are by powers of 2 
• shl/sar only takes 1 cycle! 

 
• You cannot perform complex operations like 1 + (2 * 3) 
• Must linearize the operation  

(Chengyuan covered this yesterday) 
 
t1 = 2 * 3 
t2 = 1 + t1 

 

Considerations for your IR 
• How might you design a low-level IR that can be easily

translated to x86 assembly? 
 

• How might you represent complex operations?  

Representing Functions 
• Functions are “fake” in assembly - only labels/jumps 

 
• What does it mean to “allocate” space on the stack? 

 
• Byte alignment 

int add_2(int a) {

int b = 2;

return a + b;

}

Example 

int add_2(int a) {

int b = 2;

return a + b;

}

add_2:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movq $2, -8(%rbp)

int add_2(int a) {

int b = 2;

return a + b;

}

add_2:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movq $2, -8(%rbp)

addq -8(%rbp), %rdi

movq %rdi, %rax

void add_2(int a) {

int b = 2;

return a + b;

}

add_2:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movq $2, -8(%rbp)

addq -8(%rbp), %rdi

movq %rdi, %rax

addq $8, %rsp

movq %rbp, %rsp

pop %rbp

ret

void add_2(int a) {

int b = 2;

return a + b;

}

void main(){

int c = 0;

c = add_2(10);

}

add_2:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movq $2, -8(%rbp)

addq -8(%rbp), %rdi

movq %rdi, %rax

addq $8, %rsp

movq %rbp, %rsp

pop %rbp

ret

main:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movq $0, -8(%rbp)

movq $10, %rdi

call add_2

movq %rax, -8(%rbp)

addq $8, %rsp

movq %rbp, %rsp

pop %rbp

ret

Image Credit: NEU 

“lower”
addresses 

call add_1

1. The return address is pushed (%rip) 
2. %rip is set to address of procedure 

 
add_2:

push %rbp
1. %rsp = %rsp - 8 
2. copies %rbp to address in %rsp 

movq %rsp, %rbp
1. make %rsp equal %rbp 

 
subq $24, %rsp

1. allocates 24 bytes 

rsp 

rbp 

Image Credit: NEU 

“lower”
addresses 

call add_1

1. The return address is pushed (%rip) 
2. %rip is set to address of procedure 

 
add_2:

push %rbp
1. %rsp = %rsp - 8 
2. copies %rbp to address in %rsp 

movq %rsp, %rbp
1. make %rsp equal %rbp 

 
subq $24, %rsp

1. allocates 24 bytes 

rsp 

rbp 

Image Credit: NEU 

“lower”
addresses 

call add_1

1. The return address is pushed (%rip) 
2. %rip is set to address of procedure 

 
add_2:

push %rbp
1. %rsp = %rsp - 8 
2. copies %rbp to address in %rsp 

movq %rsp, %rbp
1. make %rsp equal %rbp 

 
subq $24, %rsp

1. allocates 24 bytes 

rsp 

rbp 

Image Credit: NEU 

“lower”
addresses 

call add_1

1. The return address is pushed (%rip) 
2. %rip is set to address of procedure 

 
add_2:

push %rbp
1. %rsp = %rsp - 8 
2. copies %rbp to address in %rsp 

movq %rsp, %rbp
1. make %rsp equal %rbp 

 
subq $24, %rsp

1. allocates 24 bytes 

rsp, rbp 

Image Credit: NEU 

“lower”
addresses 

call add_1

1. The return address is pushed (%rip) 
2. %rip is set to address of procedure 

 
add_2:

push %rbp
1. %rsp = %rsp - 8 
2. copies %rbp to address in %rsp 

movq %rsp, %rbp
1. make %rsp equal %rbp 

 
subq $24, %rsp

1. allocates 24 bytes 

rbp 

rsp 

Byte Alignment 
• When calling external functions, your stack must be

16-byte aligned 
 

• What to do when they are misaligned? 
• Push a $0 to the stack 
• You can optimize for this (phase 5) 

 
• This genuinely matters! printf will break if you

don’t uphold this invariant. 
 
 

Low-Level IR 
• This is closer to the assembly. Commonly in the form of a

control flow graph for ease of performing optimizations 
 

• Have to consider all of the things we mentioned this
recitation! 
 

• Based on x86, make informed decisions on how this
low-level IR can be structured 

 

Low-Level IR 
• Start early! This is a representation that is farther from

the original Decaf. 
 

• Don’t be afraid to refactor! You will make lots of changes
to this representation as you implement phases 3/4/5 
 

• This is the IR on which you would implement SSA form 
 

Latency Tables / x86 Reference 
 
Felix Cloutier x86 Reference 
 
Agner Fog Latency Table 

https://www.felixcloutier.com/x86/
https://www.agner.org/optimize/instruction_tables.pdf

Example 
https://godbolt.org/z/9sPoceEEq 
 
https://www.felixcloutier.com/x86/idiv 
 

https://godbolt.org/z/9sPoceEEq
https://www.felixcloutier.com/x86/idiv

x86 Calling Convention 
Argument Registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 
 
Callee Saved: %r12, %r13, %r14, %r15, %rbx, %rsp, %rbp 
 
Caller Saved: %rax, %rcx, %rdx, %r8, %r9, %r10, %r11 
 
 

Appendix: Example Program 
import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

.globl main

print_str:

.string “%d\n”

.align 16

main:

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

.globl main

print_str:

.string “%d\n”

.align 16

main:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

.globl main

print_str:

.string “%d\n”

.align 16

main:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $0, -8(%rbp)

loop_body:

leaq print_str(%rip), %rdi

movq -8(%rbp), %rsi

movq $0, %rax

call printf

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

.globl main

print_str:

.string “%d\n”

.align 16

main:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $0, -8(%rbp)

loop_body:

leaq print_str(%rip), %rdi

movq -8(%rbp), %rsi

movq $0, %rax

call printf

addq $1, -8(%rbp)

cmpq $30, -8(%rbp)

jl loop_body

import printf;

void main() {

int i;

for (i = 0; i < 30; i++) {

printf(“%d\n”, i);

}

return;

}

.globl main

print_str:

.string “%d\n”

.align 16

main:

pushq %rbp

movq %rsp, %rbp

subq $16, %rsp

movq $0, -8(%rbp)

loop_body:

leaq print_str(%rip), %rdi

movq -8(%rbp), %rsi

movq $0, %rax

call printf

addq $1, -8(%rbp)

cmpq $30, -8(%rbp)

jl loop_body

addq $16, %rsp

movq %rbp, %rsp

popq %rbp

ret

Questions? 
Good luck on phase 3! 
 
Godbolt Example (time permitting) 

