
6.110 Computer 
Language Engineering 
Recitation 9: Phase 4 infosession 
April 4, 2025 



Weekly updates ←  
Phase 4 info 



Wrapping up phase 3… 
• Project phase 3 is due today 11:59PM!!!  

•  The report is due tomorrow at 11:59PM 
•Remember to add your teammates to the 
submission! 

•If you need last-minute help, please come to OH 
today from 2-7pm. 



New releases 
•Project phase 4 has been released, due 
Friday, April 18  
•Miniquiz (will be posted soon) and Weekly Check-in 
are due Thursday, April 10  

•Reminder: these are graded on completion – please 
submit!! 



Schedule… Week N+1 
Mon 
4/7 

Tue 
4/8 

Wed 
4/9 

Thu 
4/10 

Fri 
4/11 

No lecture   Recitation 
Register 
Allocation 

      Due:  
Mini-quiz, 
weekly check-in 

 



Lecture forecast… Week N+2 
Mon 
4/15 

Tue 
4/16 

Wed 
4/17 

Thu 
4/18 

Fri 
4/19 

Lecture 
Dataflow 
Theory 

Lecture 
Dataflow 
Theory 

 

No lecture  
 

No lecture  
 

Recitation 
Phase 5 
infosession 

      Due:  
Mini-quiz, 
weekly check-in 

  Due: Project    
phase 4  



Weekly updates 
Phase 4 info ←  



Project overview 
import printf;

void main() {
…

Decaf source file  x86-64 assembly 

push %rbp
mov%rsp, %rbp
…

Internal representation Phase 1. Does it have 
the right structure? 
(syntax) 

Phase 2. Does it make 
sense? (semantics) 

Phase 3 
code generation 



So we have a working compiler now…* 
what next? 

* Or by the end of today 



Project overview 
import printf;

void main() {
…

Decaf source file  Optimized 
x86-64 assembly 

push %rbp
mov%rsp, %rbp
…

Internal representation Phase 1. Does it have 
the right structure? 
(syntax) 

Phase 2. Does it make 
sense? (semantics) 

Phase 3 
code generation 

Phase 4. What can we 
learn about the 
program? (dataflow 
analysis) 



Project overview 
import printf;

void main() {
…

Decaf source file  Even more optimized 
x86-64 assembly 

Phase 5. How can we 
make the output code faster? 

push %rbp
mov%rsp, %rbp
…

Internal representation Phase 1. Does it have 
the right structure? 
(syntax) 

Phase 2. Does it make 
sense? (semantics) 

Phase 3 
code generation 

Phase 4. What can we 
learn about the 
program? (dataflow 
analysis) 



From now on, the project becomes more open-ended. 

We’ll require some specific optimizations, but other than 
that you are free to implement whatever your heart 
desire. 

At the end of phase 5, there will be a compiler derby to 
find which team’s compiler produces the fastest code! 



Logistics and requirements 



Phase 4 overview 
•Required: implement at least one of the 
following global dataflow optimizations 

•Copy propagation 
•Common subexpression elimination 
•Dead code elimination 

•Optimization should at least work on 
statements involving local (non-array) 
variables  



Dataflow analysis: overview 
•A form of program analysis: compile-time reasoning about program 

behavior 

• Store some information we’ve learned about the program at each 
program point (CFG node) 
•At each node, need to update information based on content of the 

node (“transfer function”), and propagate information to successor 
nodes (or predecessors for backwards analyses) 
•At merge points, need to combine information somehow 
• Iterate until we reach a fixed point 
• More of this formalization in N+2 week’s lectures! 



Copy propagation 
•Propagate copies (assignments like a ← b) 
•Based on reaching definitions analysis: which definitions of 

each variable reaches each program point* 

a ← b
c ← a + 1

a ← b
c ← b + 1

Before  After 



Copy propagation 
• Be careful about this! 

a ← b 
b ← c 
d ← a 

• One way to avoid: just keep track of which variables 
are copies of each other instead of using reaching 
definitions 

a ← b 
b ← c 
d ← b ??? 



Dead code elimination 
• Remove code that computes variables that are not used 
•Based on liveness analysis: which variables are “live” (has a 

use afterwards) 

a ← x + y  
x ← a + b 

(a is global, x is local to method) 

a ← x + y 

Before  After 



Common subexpression elimination 
• Only compute an expression once 
•Based on Available expressions analysis: which expressions 

defined earlier are still valid (operands not modified) 

 
a. ← x + y 
b. ← x + y  
c. x ← a 

d. ← x + y 

t1 ← x + y 
a. ← t1 
b. ← t1 

x ← a 
c. ← x + y 

Before After



Summary 
Optimization  Analysis 

Copy propagation  Reaching definitions* 
*be careful 

Common subexpression 
elimination 

Available expressions 

Dead code elimination  Liveness 



Summary 



Phase 4 overview (cont’d) 
•Optional: extend optimizations to global variables and 
array variables 
•Optional: other optimizations (more info in handout) 

• Constant propagation and folding 
• Loop-invariant code motion 
• Unreachable code elimination 
• Algebraic simplification (not dataflow) 
• ... 



Submission and grading 
•Phase 4 is worth 10% of the overall grade, 
due Friday, April 18. 

•Two items to be submitted on Gradescope 
• Design document (8%) 

• Overall dataflow framework (3%) 
• Details of implemented dataflow optimizations (4%) 
• Extras, difficulties, and contributions (1%) 

• Code submission, autograded on correctness only (2%) 
• No private test cases 
• Output code should be correct with and without optimizations 



Specifications 
•Your compiler should be correct with or without 
optimizations 

•When running 
./run.sh <filename> –t assembly 
on a valid input file: 
•Outputs x86-64 assembly code to the output file (or stdout 

if –o is not specified) 
•We’ll assemble using 

gcc -O0 -no-pie output.s -o output.exe 



CLI for optimizations 
• -O cse turns on common subexpression elimination only 
• -O dce turns on dead code elimination only 
• -O cp,cse turns on copy propagation and common 

subexpression elimination only 

•-O all turns on all optimizations (we’ll run the 
autograder with this option) 
• -O all,-cse turns on all optimizations except common 

subexpression elimination 



Design document 
•Explains technical details 
•Includes the following sections: 

1. Design (including general dataflow framework and specific 
details for each implemented optimization) 

2. Extras 
3. Difficulties 
4. Contribution 



1. Design 
•Overview of your design, including design choices you 
made and design alternatives you considered. 

•This section should help us understand your code 
•In particular, please include: 

•Your general framework for dataflow optimizations 
(worth 3%) 
•Details of each dataflow optimization you implemented 

(worth 4%, more info on next slide) 



1. Design — details 
•For each dataflow optimization you implemented, 
please include: 

• the scope of the optimization (did you take into account 
global variables and/or array variables?) 

• the dataflow equations you used 
•a sample test case, with generated code before and after, 

included under doc/phase4-code/ in your repository 
• a brief explanation of how your dataflow optimization 

worked 



Other sections (worth 1%) 

2. Extras: 
• Any clarifications, assumptions, or additions you made 
• Any interesting debugging techniques, build scripts 
• Anything cool you’d like to share! 

3. Difficulties: 
• List of known problems with your project, and as much as you know 

about the cause 
• Any issues from phase 3 that you fixed 

4. Contributions: A brief description of how your group divided the work 



Words of advice 



•Start simple!  
•Start with very simple test cases so that you 
understand what’s happening 

•Start with local non-array variables only, and only 
add global variables / array variables after you can 
get the analysis to work on local variables 



•Keep things general 
•Various dataflow analyses 
can all be written in terms 
of a transfer function and a 
meet function 

•Consider making a 
parametrized dataflow 
framework 

•Next week’s lecture will 
cover this formalization 



•Consider using single-statement blocks 
•More time/memory-consuming but who cares 
•No need to propagate information inside a basic 
block 

•One tricky thing: Need to be able to add/remove 
nodes/merge points/join points. 



•Use array of nodes, not pointer-and-objects 
(especially for Rust teams) 

•Key: Need to be able to remove/add statements 
•Especially relevant if you don't use basic blocks 
•You will need adjacency list and reverse adj. list 



GDB crash course 
Code available at: 
https://github.com/6110-sp25/recitation9 
 

 

https://github.com/6110-sp25/recitation9

