
6.110 Computer
Language Engineering 
Recitation 10: Reg alloc & peephole 
April 11, 2025 

Register allocator 
Peephole optimization  

Weekly updates ←  

Schedule… Week N+1 
Mon
4/7 

Tue
4/8 

Wed
4/9 

Thu
4/10 

Fri
4/11 

No lecture   Recitation 
Register
Allocation 

      Due:  
Mini-quiz,
weekly check-in 

 

Lecture forecast… Week N+2 
Mon
4/15 

Tue
4/16 

Wed
4/17 

Thu
4/18 

Fri
4/19 

Lecture 
Dataflow
Theory 

Lecture 
Dataflow
Theory 

 

No lecture  
 

No lecture  
 

Recitation
Phase 5
infosession 

      Due:  
Mini-quiz,
weekly check-in 

  Due: Project    
phase 4  

Register allocator ← 
Peephole optimization  

Weekly updates 

Register allocator: overview 
Probably the most complicated optimization so far 
Many moving parts, with tricky bugs 
Think carefully before writing any code! 
Martin’s slides give a good overview of techniques for non-SSA IR 
What if we used SSA? 

Register allocator: overview 
Probably the most complicated optimization so far 
Many moving parts, with tricky bugs 
Think carefully before writing any code! 
Martin’s slides give a good overview of techniques for non-SSA IR 
What if we used SSA? 
1. De-SSA first 
2. Reg alloc directly on SSA (Hack) 

Why over SSA? 
Register allocation over SSA has many merits: 
● Interference graph is chordal — poly time optimal coloring 
● # register needed = max variables live at program point 
● Decoupling spill decision from coloring 
● Intellectual superiority? 
Challenges: 
● Inserting spills on SSA without breaking it 
● Writing the poly time coloring algorithm 
No time to cover entire algorithm — just pointers and tips 
Many also applies to non-SSA reg alloc 

Roadmap 
1. Compute spill cost 
2. Insert spills and reloads 
3. Reconstruct SSA 
4. Do coloring 
5. de-SSA 

Inserting spills and reloads 
Assume a 2-register machine def x

def y

def z
use y
use z

use x

3 live variables 😞 

Inserting spills and reloads 
Assume a 2-register machine 
Spills splits live ranges and
lower register pressure 

def x
def y
spill x
def z
use y
use z
reload x
use x

2 live variables 😊 

Inserting spills and reloads 
Assume a 2-register machine 
In SSA: 
register req’d = # live vars 
 
 
Goal: spill such that # live vars
≤ # of physical registers 

def x
def y
spill x
def z
use y
use z
reload x
use x

2 live variables 😊 

Spill cost: Belady’s heuristic 
What variable should we spill if we run out of registers? 
Idea: choose the one whose next use is farthest down the line 
If we spill it, we don’t have to worry about it for a long while 

Spill cost: Belady’s heuristic 
In basic block:  
d = {v: ∞ for v in vars} # distance to nearest use
for inst in reversed(block):
 for v in vars:
 d[v] = 0 if v in inst.operands else d[v] + 1
 if inst defines v:
 del d[v]
 cost_before[inst] = copy(d) 

 

Spill cost: Belady’s heuristic 
Across basic blocks: need to merge from successors 
● MIN: distance is nearest of all successors 

○ A lattice, can use worklist algorithm 
● Weighted Avg: distance is avg of all successors, weighted by

branch probability 
○ Can assign higher prob for loop backedges 
○ Not a lattice, convergence not guaranteed 

Spill cost: data structures 
Need a spill cost map of var → spill cost 
● Frequent copies, sparse updates 
● Persistent maps recommended 
Need a representation of program point 
● A block of n instructions have n + 1 program points 
Need a map of program point → spill cost map 
Trick: keys of spill cost map can double as live variable set 

Fixing up spills across blocks 
Spill and reload insertion are done on basic block level 
E.g, variable may be  
● spilled at the end of prev block 
● assumed to have not been spilled in next block 
● reload needs to be inserted 
How to handle phi nodes, phi spills? 
More in reading 

Reconstructing SSA 
Reloads are also definitions of a variable! 
● Essentially loading from memory 
Need to re-run SSA construction w.r.t. reloads 
Memory phi nodes??? 
See Alg. 4.1 in Hack’s thesis 

Doing the actual coloring 
Hack’s paper gives an algorithm to do optimal coloring without
explicitly constructing the interference graph 
Our advice: DON’T START WITH THAT ALGORITHM 
● More complicated 
● Harder to hack in register constraints/preferences 

Using ILP solver 😈  
Graph coloring is an NP hard 
Your homemade brute-force likely does not perform well 
Enter Integer Linear Programming 

Using ILP solver 😈  
Easy to modify objective to incorporate affinity, e.g. 

○ Prefer same register for phi node arguments 
○ Prefer same register for src and dest var in three address code 
○ Prefer callee-saved register for live var across calls 

Many good open source solver libraries out there: 
● GLPK 
● Cbc 
● HiGHS 

References 
● Hack’s doctoral thesis 

○ for everything about SSA reg alloc 
● Braun and Hack ‘09 

○ for fixing up spills & reloads 
● libFirm 

○ the code! 
○ see course website for guidelines

on approaching the codebase 

https://publikationen.bibliothek.kit.edu/1000007166/6532
https://publikationen.bibliothek.kit.edu/1000007166/6532
https://github.com/libfirm/libfirm
https://github.com/libfirm/libfirm

General tips 
● Start stress-testing your register allocator with very few registers

(say 3) — can catch many more bugs and edge cases 
● Think it through before you type 
● Comment extensively as you go 

○ Document all implicit invariants 
○ Add assertions if necessary 
○ Sketch proof of correctness 

● Use rubber duck or teammates 

Register allocator 
Peephole optimization ← 

Weekly updates 

Peephole Optimization: overview 
- assembly-level optimizations that take short snippets of assembly

and transform them into better ones 
- can often be performed simultaneously with codegen (try to emit

good code in the first place) 

don’t do this 
movq %r8, %r9
movq %r9, %r8

pushq %rax
popq %rax

movq <something> %rax
movq <otherthing> %rax

Classic trick for zeroing a reggie
xor %reg, %reg 
 
Not really an optimization so much as something to be aware of when reading x86. 
 
Why do this over movq $0 %reg? 
 

- Smaller code size -> better for icache 
- register renamer recognizes the pattern points the register at hardwired zero !?!? 

 
 
 
https://stackoverflow.com/a/29156824 
 

https://stackoverflow.com/a/29156824

Fallthrough
Take advantage of it! 
 
Loop bodies are executed more often than not, so try to fall through in to them, as the next instructions
in memory should already be hot in cache. 

Stack Shenanigans
-fomit-frame-pointer 
 
Keeping a chain of stack pointer is useful for debugging. Since compiled decaf executables are seldom
distributed and don’t have variable-length arrays, you can just use %rbp as a general purpose register. 
 
The Red Zone 
 
Any function call is allowed to access up to 128 bytes below its initial stack pointer, without allocating
stack space. For non-leaf calls, this is obviously dangerous. But for leaf calls, this means we can avoid
stack manipulation if we need fewer than 128 bytes of space. 
 
https://godbolt.org/z/K134nco4E 
 

https://godbolt.org/z/K134nco4E

Powers of 2 
https://godbolt.org/z/GK4GTGWvE 
 

https://godbolt.org/z/GK4GTGWvE

The many uses of lea 
https://godbolt.org/z/hfTMcPTdh 
 

https://godbolt.org/z/hfTMcPTdh

cmov 
https://godbolt.org/z/oTnb564b3 
 

https://godbolt.org/z/oTnb564b3

Hacker’s Delight 
https://godbolt.org/z/c5s9qdecf 
https://llvm.org/doxygen/DivisionByConstantInfo_8cpp_source.html 
https://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html 
https://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html 
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Support/DivisionByConstantInfo.cpp#L74 
 
 
A few notes: 

- smaller magic numbers might generate faster muls, so you should try to use the smallest one 
 

https://godbolt.org/z/c5s9qdecf
https://llvm.org/doxygen/DivisionByConstantInfo_8cpp_source.html
https://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html
https://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Support/DivisionByConstantInfo.cpp#L74

Quiz 2

We’ll almost certainly ask you to calculate the
magic number for some divisor. 

Just Kidding
Happy Hacking! 

