
Re-lecture 2

February 21, 2024

6.110 Computer
Language Engineering

High-level IR ←
Semantic Analysis

Parse Tree
Abstract Syntax Tree

Control-flow Graph

Intermediate
Representations

High-level IR

Low-level IR

Directed Acyclic Graphs

Basic Blocks
Single Static Assignment

structured

compilation stage
linear source code

parse tree

“high-level IR”

“low-level IR”

assembly

High-level IR
•Goal: semantic checking and program analysis

High-level IR
•Goal: understand what the code is doing

x = 4 + f(true);

•What is 4? What is true?
•What is x?
•What is f?

Symbol tables
•Stores relevant information about each identifier

identifier → descriptor
 x local variable id 1, type int
 f method id 3, type bool → int

import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0)
 {
 int x = 3;
 printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope

printf → imported method
x → global variable, type = int
main → method, params = [], return type = void
 x → local variable, type = int
 y → local variable, type = int

 x → local variable, type = int

,

Symbol tables
global symbol table

symbol table

symbol table

child of

child of

import printf;
int x = 0;

void main() {
 int x = 1, y = 2;
 if (x > 0)
 {
 int x = 3;
 printf(“%d %d”, x + y);
 }
}

Scope
global scope

method scope

block scope

Summary
•One symbol table per scope
• Each symbol table links to symbol table of parent

scope
•First search for identifier in current scope
• If not found, go to parent symbol table
• If not found in any table, semantic error!

What goes in descriptors?
•Type (or signature for methods)
•Some identifying info (e.g. name, id, stack offset)
• Information about the “children” of the node
•Method descriptors: method code, symbol table for

method scope
• Class descriptors: symbol table for class scope

Idea: use descriptors to go down the tree

What goes in symbol tables?
•Everything at that given scope
• Global scope: functions, imported functions, global

variables
•Method scope: parameters, local variables
• Block scope: local variables
• Class scope: class fields, class methods

•Link to symbol table of parent scope
Idea: use symbol tables to go up the tree

Other designs are also possible!

Building high-level IR
• Recursively traverse parse tree to build corresponding

IR nodes
• Structure of high-level IR will be similar to language

grammar
• Build up symbol tables as you go
• Create a symbol table for each IR node corresponding to a

scope
More practical tips in Recitation and Project 2 page
(coming out soon!)

For the quiz, you should know how to:

•Explain what descriptors are and describe what
information they contain
•Construct symbol tables for simple programs,

including programs with simple classes
• Identify the scope of each identifier

High-level IR
Semantic Analysis ←

Semantic Analysis
•We want to make sure that our program makes

sense.
•Here are some things that don’t make sense, and

how to detect them.

Name issues
void main() {
 int x, x; // x is defined twice
 in the same scope
}

Detection: check for duplicates in each symbol
table

Name issues
void main() {
 y = 0; // y does not exist
}

Detection: look up each identifier, and check that
it is in scope

Type errors: operations
4 + true // + : (int, int) → int
4 && 5 // && : (bool, bool) → bool
false < 1 // < : (int, int) → bool

Detection: recursively determine the type of each
operand

Type errors: assignments
int x = false; // x is int, not bool
int y[5];
y += 4; // y is int array, not int

Detection: check that LHS and RHS of each
assignment has the same type

Type errors: constants
const int x; // uninitialized const
const int y = 1;
y = 2; // assignment to a const

Detection: (kinda ad-hoc)
•check that each const declaration is initialized
•check that LHS of assignments is not const

Type errors: methods
int f(int x) {} // should return int
void main() {
 f(0, 1); // wrong # arguments
 f(true); // wrong argument type
 return 1; // should not return
}
Detection: check method signature

Type compatibility
class A {
 int x;
}
class B extends A {
 int y;
}

We say
•B is compatible with A
•B is a subtype of A
•B can substitute for A

(The reverse is not
true!)

Type compatibility
class A {
 int x;
}
class B extends A {
 int y;
}
B f(A a);

A a;
B b;
a.y = 1; // invalid
b.x = 0; // valid
a = b; // valid
b = a; // invalid
a = f(b); // valid

For more type theory, take
6.5110 [6.820] or 6.5120 [6.822]

For the quiz, you should know how to:

•Determine what semantic checks need to be
done for each given statement
•Perform semantic checks on a given program
•Determine compatibility of

subclasses/superclasses

Encore: more object-oriented stuff

(See lecture slides, lectures cover this for
historical reasons)

