import printf;

%rbp
o o
void main() { %rsp, %rbp

6.110 Computer
Language Engineering

Decaf source file x86-64 assembly

Internal representation

Phase 1. Does it have
the right structure?
(syntax)

March 6, 2024

Phase 2. Does it make
sense? (semantics)

%rbp
%rsp, %rbp

%rbp
%rsp, %rbp

= . % i Code
High-level IR x86-64 High-level IR Low-level IR generation x86-64
(AST) assembly (AST) (CFG) assembly

Structured Structured .

control flow Unstructured control flow Destructuring Unstructured Unstructured
. control flow] > control flow control flow
if/else, loops, if/else, loops,

jumps only! edges = jumps jumps only!

break, continue break, continue

Two-address
code

Two-address
code
mulg $4, %rcx

Complex
expressions
x+=y[4*z]/a

Complex Linearizing | Three-address
expressi > code
x+=y[4xz]/a tl e 4 *z

mulg $4, %rcx

%rbp
%rsp, %rbp

Control Flow Graph

into add(n, k) {

Ll Code s=0,a=4i=0;
High-level IR generation x86-64 if (k)

AST bl
(:) assembly b=1;

else
b=2;
while (i < n) {
s =s + a*b;
i=i+1;

Structured
control flow
if/else, loops,

break, continue

Unstructured
control flow
jumps only!

Unstructured
control flow
edges = jumps

Destructuring

v

Two-address
code
mulg $4, %rcx

Complex Linearizing | Three-address
expressi > code
x+=y[4xz]/a tl e 4 *z

b

return s;

Control Flow Graph IF to CFG for If Then Else
; ; Source Code
* Nodes Represent Computation if (condition) {
— Each Node is a Basic Block code for then
— Basic Block is a Sequence of Instructions with }else {
« No Branches Out Of Middle of Basic Block code for else
* No Branches Into Middle of Basic Block ¥
 Basic Blocks should be maximal

hen CFG for else
e . IF
s with first instruction if no op
Includes all instructions in basic block

» Edges Represent Control Flow

Execution of ¢ bloc

condition

then code else code

AST to CFG for If Then AST to CFG for While
Source Code

Source Code
if (condition) { CFG while (condition) { CFG
code for then

} CFG for cond }code for loop body - CFG for cond

IR IR

if while

condition condition
then code

loop bbdy code

AST to CFG for Statements Basic Block Construction
Source Code e)
code for S1; CFG * Start with instruction control-flow graph
code for S2

CFG for S1 * Visit all edges in gr
* Merge adjacent nodes if

| Only one edge from first node
CFG for S2
IR

— Only one edge into second node
seq

code for S1 code for S2

return

return | return

Program Points, Split and Join Points

One program point before and after each statement in program

it point has multiple successors — conditional branch statements only
t points

Merge point has multiple predecessors

Each basic block

— Either starts with a merge point or its predecessor ends with a split
point

— Either ends with a split point or its successor starts with a merge point

%rbp
%rsp, %rbp

% i Code
High-level IR Low-level IR generation x86-64
(AST) (CFG) assembly

Structured
control flow Unstructured Unstructured

. control flow control flow
if/else, loops, edges = jumps jumps only!
break, continue 8 Jump: Jump: ¥

Complex Linearizing | Three-address Two-address
expressions code code
x+=y[4%z]/a tl « 4 % z mulg $4, %rcx

Short-Circuit Conditionals

In program, conditionals have a condition written as a boolean
expression
((i<n) && (V[i] 1= 0)) || i > k)
Semantics hould execute only as much as required to
determine dition
— Evaluate (v[i] = 0) only if (i <n) is true

Evaluate i >k only if ((i < n) && (v[i] !=0)) is false

Use control-flow graph to represent this short-circuit evaluation

For the quiz, you should know:

*Whatis a CFG
*What are basic blocks

Motivation For Short-Circuit Conditionals

Following program searches array for 0 element

inti=0;
while (i <n && a[i] !=0) {
i=itl1;

1
S

If i <n is false, should you evaluate a[i] !=0?

Short-Circuit Conditionals

while (i <n && v[i] 1= 0) {
i=itl;

More Short-Circuit Conditionals

cmp %r10, %rl

mov

add $1,9

Destructuring Seq Nodes

ruct(n)
generates lowered form of structured code represented by
returns (b,e) - b is begin node, e is end node in destructed form

if n is of the form seq x y

Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code re nted by n
s (b,e)-b in node, e is end node in d ed form
if n is of the form seq x y

(by.e,) = destruct(x); - (by,e,) = destruct(y);

by

=

Routines for Destructuring Program
Representation

destruct(n)
generates lower rm o uctured code represented by n

returns (b,e) - b is begin node, e is end node in destructed form
shortcircuit(c, t, f)

if ¢ is true, control flows to t node
if ¢ is false, control flows to f node

returns b - b is begin node for condition evaluation

new kind of node - nop node

Destructuring Seq Nodes

ruct(n)
generates lowered form of structured code represented by
returns (b,e) - b is begin node, € is end node in destructed form
if n is of the form seq x y

= destruct(x);

b

\ ‘ 'y => Q? G

Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code re nted by n
s (b,e)-b in node, e is end node in d ed form
if n is of the form seq x y

(by.e,) = destruct(x); = (by,e,) = destruct(y);

Destructuring Seq Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node in destructed form
if n is of the form seq

(by.e,) = destru g 1€y) = destruct

next(e,) = by; 4: return

" =Y

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node in destructed form
ifnis of the formifc x y

(b,.e,) = destruct(x);

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node in destructed form
ifnis of the formifc x y

struct(x); (11}‘5},) destruct(y);

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) s begin node, ¢ is end node in destructed form

ifnis of the formifc x y

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, ¢ is end node in destructed form
ifnis of the formifc x y

(by,e,) = destruct(x); (17}‘5},)

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, ¢ is end node in destructed form
ifnis of the formifc x y
(b,.e,) = destruct(x

new nop; - next(e,) = e;

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node in destructed form
ifnis of the formifc x y
(b,.e,) = destruct(x); (11}‘5},) = destruct

next(e,) = e; 5: next(e,) =

Destructuring While Nodes

ruct(n)
generates lowered form of structured code represented by n

returns (b,e) - b is begin node, e is end node in destructed form

if n is of the form while ¢ x

\3‘]1il.c @

C X

Destructuring While Nodes

ented by

end node in destructed form

e =new nop; : (by,e,) = destruct(x);

\3‘]1il.c @

C X

v

Destructuring If Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) s begin node, ¢ is end node in destructed form
ifnis of the formifc x y
(by.e,) = destruct(x (lvve)=

€ = Nnew nor next(e,) = e; nml(q) =

b, = shortcircuit(c, b, b,); 7: return

b > ey
= O bﬁ%ﬂ\;

Destructuring While Nodes

ruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, € is end node in destructed form
if n is of the form while ¢ x

€ = new nop;

\3‘]1il.c @

C X

Destructuring While Nodes

lowered form of structured code represented by n
in node, e is end node in destructed form
of the form while ¢ x
new nop; - (by.e,) = destruct(x);
shortcircuit(c, b,, €);

\3‘]1il.c @

C X

Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
returns (b,e) - b is begin node, e is end node in destructed form
of the form while ¢ x
=new nop; : (b,,e,) = destruct(x);
shortcircuit(c, by, e); : next(e,) = b;

\3‘]1il.c @ § =

C X

Shortcircuiting And Conditions

shortci
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form

if ¢ is of the form ¢; && ¢,

¢, &&c, @

Shortcircuiting And Conditions

uit form of conditional rey
returns b - b is begin node of shortcircuit form
the form ¢; && ¢,

b, = shortcircuit(c,, t, f); 7: b; = shortcircuit(c;, b, f);

Destructuring While Nodes

destruct(n)
generates lowered form of structured code represented by n
s (b,e) - b is begin node, e is end node in destructed form
if n is of the form while ¢ x
(by.e,) = destruct(x);
, by, €); 4 next(e,) = b,; 5: return

while

Shortcircuiting And Conditions

shortcir
generate: ortcircuit form of conditional re;
returns b - b is in node of shortcircuit form
if ¢ is of the form ¢; && ¢,

b, = shortcircuit(c,, t, f);

Shortcircuiting And Conditions

shortcircuit(c, t, f)
shortcircuit form of conditional re
b is begin node of shortcircuit form
the form ¢; && ¢,
b, = shortcircuit(c,, t, f); 7: b; = shortcircuit(c;, b, f);

return

¢, &&c, @ b
o))
i

Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shc uit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form

if ¢ is of the form ¢, || ¢,

=

Shortcircuiting Or Conditions

shortci
generates shortcircuit form of conditional represented by ¢
returns b - b is begin node of shortcircuit form
if ¢ is of the form ¢, || ¢,
b, = shortcircuit(c,, t, f); 2: b; = shortcircuit(cy, t, b,);
by
4
*b

Cpilcy @
i

uit form of conditional rey
returns b - b is begin node of shortcircuit form
the form ! ¢,

shortcircuit(c, f, t); return(b);

Shortcircuiting Or Conditions

shortcircuit(c, t, f)
generates shortcircuit form of conditional re nted by ¢
- b is begin node of shortcircuit form
if ¢ is of the form ¢, || ¢,

b, = shortcircuit(c,, t, f);

Shortcircuiting Or Conditions

shortcir
generates shortcircuit form of conditional re; nted by ¢
returns b - b is begin node of shortcircuit form
if ¢ is of the form ¢, || ¢,
b, = shortcircuit(c,, t, f); 2: b; = shortcircuit(cy, t, b,);

return

cillcy @
t

|
o

Computed Conditions

shortcircuit form of conditional re
b is begin node of shortcircuit form
the form e, <e,
b = new cbr(e; <e,, t, f); 2: return (b);

Nops In Destructured Representation
while (i <n && v[i] = 0) {
i=itl; |

) jl xxx

)

Eliminating Nops Via Peephole Optimization

-/

cmp %r10, %rl1

cmp %rl0, \

Linearizing CFG to Assembler

Generate labels fo targets at branches

For the quiz, you should know:
— Labels will correspond to branch targets . What/why of short—circuiting
— Can use code generation patterns for this .
Emit code for procedure entry *How to construct a CFG for simple programs
Emit code for basic blocks
— Emit code for statements/conditional expressions
Appropriately linearized
— Jump/conditi jumps link basic blocks together

Emit code for proce

push %xbp Overview of a modern ISA

mov %rsp, %rbp

High-level IR Low-level IR Memory
(AST) (CFG) . Memory
Registers

Structured
control flow
if/else, loops,

break, continue

Unstructured
control flow
edges = jumps

Destructuring

v

Unstructured
control flow ALU Registers .

i l
jumps only! Control

Control

Complex Linearizing | Three-address
expressi > code
x+=y[4xz]/a tl e 4 *z

Two-address
code
mulg $4, %rcx

Overview of Computation Typical Memory Layout

Loads data from memory into registers
» Computes on registers 0x800 0000 0000
* Stores new data back into memo TomyaEme
Flow of trol determir NS Some parameters
Role of compiler: i fes

Orchestrate r €r usage

Generate low-level code for interfacing with machine

0x40 0000
Unmapped
0x0

Concept of An Object File Basic Compilation Tasks

The object file has: * Allocate space for global variables

— Multiple Segments B0 it e
Z Symbol Information (in data segment)
— Relocation Information » For each procedure
Segments

— Global Offset Table

— Procedure Linkage Table nerate code for procedure
— Text (code)

~Data * Generate code for procedure body

Allocate space for parameters and locals (on stack)
* Generate procedure entry prolog

— Read Only Data - ; }
To run program, OS reads object file, builds executable process in memory, * Generate procedure exit epilog
runs process

We will use assembler to generate object files

int values[20];
Generate Code For Procedure Bo int sum(int n) {
inti, t;
Flatten expressions =1
— Read program variables into temps before use t=0;
— Use temps to have all ops of form while (i <n) {
if (1 <20) {

templ = temp2 op temp3
|

t=t+ value (P “
templ = temp2[tem | — -
t =t + values[i] “ return t;

if (temp!1 op temp?2) o

£ ls ‘

while (temp1 op temp2) |
For unoptimized code generation, ay return t;

neration templates/patterns to flatte

int values[20];
int sum(int n) {

int i, t, temp1, temp2, temp3, temp4;
i=0;

t=0;

templ =n;

temp2 = 1;

i=temp2;

temp2 = 0;

t = temp2:
temp3 =1i;

temp4 = templ;

0) { then code} else { else code

cmp , -48(%rbp) check if x <0
jl .elsebranch0
... then code
jmp .done0
.elsebranch0:
... else code

.done0

while (temp3 < temp4) {

temp3 =i

temp4 = 20;

if (temp3 < temp4) {
temp3
temp4 = i;
temp4 = values[temp4];
temp2 = temp3 + temp4;
t=temp2;

temp3 =1i;
tempd = 1;
temp2 = temp3 + temp4;
i = temp2;
temp2 =t

return ter

Patterns for

temp3 =i

mov -16(%rbp), %

movq %rax, -40(%

Unoptimized Generated Code

orax

tbp)

temp2 = temp3 + temp4

mov -40(%rb
add -48(%bp),

movq %rax, -32(

, Yorax

rax

orbp)

temp4 = values[temp4]

mov -48(%rbp), %r10

mov values(, %r10, 8), Yorax

movq %ra

Array Bounds Check Code

cmp $0, -48(%rbp)
j .boundsbad0
-48(%rbp), %rax

orbp)

check if array index temp4 < 0

$20, %rax check if array index temp4 >= 20

oundsbad0
.boundsgood0
bad0:

mov -48(%rbp), %rdx

mov $8, %rc

call .boundserror

.boundsgood0

perform array access

Allocate space for global variables The Call Stack

* Arguments | to 6

Decaf global array declaration .
Y are in:

8*n+16(srbp)| argument n
int values[20];

o,

ordi, Yrsi, %rdx, 16(szbp)| argument 7
— %rcex, %r8, and %r9 8(szbp)| Return address
Assembler directive (reserve space in data segment) %rbp 0(szbp)| Previous %rbp
. -8 (%rby
.comm values,160,8 marks the t (¥zbp)| parameter 1
/’ 1~ \ of the current fi

Name Size Alignment 0 (%rsp)

marks top of stack

-8* (m+n) -8 ($rbp)

local m
0 (%rs
return value

Yrax

Questions Allocate space for parameters/locals

Each parameter/local has its own slot on stack
Each slot accessed via %rbp negative off
Iterate over parameter/local descriptors

gn a slot to each parameter

Generate procedure entry prologue x86 Register Usage

64 bit registers (16 of them)

Push base pointer (%rbp) onto s %rax, Yr
Y%r8-%r15
Decrease stack pointer by activation record s Stack pointer Y%rsp,
All done b

enter <stack frame size in bytes>, <lexical nesti

Copy stack pointer (%rsp) to base pointer (%orbp)

Parameters

enter § 0
For now (will optimize later) move parameters to slots
in activation record (top of call stack) e
Return value
movq %rdi, -24(%rbp) — 64 bits or less in %

— Longer return values passed on the stack

Questions Callee vs caller save registers

have %rbp if also have %rsp? » Registers used to compute values in procedure
* Should registers have same value after procedure as be

. . ~OCe o)
s all parameters in regist procedure?
allee save registers (must have same value)

s all parameters on stack?) o
%rsp, %orb , %or12-%r15

Caller save registers (procedure can change value) %rax, %rcx, %
s return value in register(s) regardless of size? Yrsi, Yordi, %or8-%rl11

f size? » Why have both kinds of registers?

. . Pre-call:
Generate procedure call epilogue Procedure Linkage savecatrsaveargisters
-Set up arguments
¢ Put return value in %rax Standard procedure linkage :fi'i:e;;': ©
mov -32(%rbp), Y%erax procedure p Prolog:

+Push old frame pointer
» Undo procedure call procedure g

-Save callee-saved registers

5 : rolog
Move base pointer (%rbp) to stack pointer (%rsp) - _ “Make room for parameters,
.) N . temporaries, and locals
— Pop base pointer from caller off stack into %rbp Eplloy
— Return to caller (return address on stack) *Restore callee-saved registers
— All done by -
7 *Store return value

leave Post-return:
- *Restore caller-saved registers
ret 9

-Pop arguments

%rbp
%rsp, %rbp

i e Code
High-level IR Low-level IR generation x86-64 . . .
g(AST) (CFG) = ssembly (Note: The TAs recommend having a linearized
p— CFG, i.e. linearize during construction of the CFG,
controlflow | Pestructuring | Unstructured Unstructured instead of during code generation from CFG to
if/else, loops control_flow t_:ontrol flow bl)
' ; , edges = jumps jumps only! assemoly.

break, continue

Complex Three-address Two-address
expressions code code
x+=y[4xz]/a tl e 4%z mulg $4, %rex

Generate code for procedure body Generate code for procedure body

Evaluate expressions with a temp for each subexpression Evaluate expressions with a ten

i=i+1

for each subexpression

i=i+1
temp3 = i temp3 = i
i from st: it -16(%tbp), %r
movq %rax, temp3 on stack Temps stored on stack movq Yrax, -40(%rbp)

Temps stored on stack
ftemp4 = 1

ftempé4 = 1
mov $1, temp4 on stack %rax as working register

mov S1, -48(%rbp) Y%rax as working register

2 St Apply code generation templates L "“"" emp Apply code generation temy
I F mov -40(%rbp) &

a temp4 on stack, %rax temp = var - o temp = var

movq temp2 on stac| temp = temp op temp

mov temy

movq Y) temp = temp op temp
var = temp var = temp
ter

mov mov

movq movq

Evaluating Expression Trees Issues in Lowering Expressions

Flat List Model ap intermediates to registers?
+ The idea is to linearize the expression tree registers are limited

« Left to Right Depth-First Traversal of the expression tree * When the tree is be insufficient = allocate spa

Allocate temporaries for intermediates (all the nodes of the tree)
* New temporary for intermediate many copies
> Al el o e i (@ i) y, we’ll take care of them in the optimization pa
« Each expression is a single 3-addr op
nerator very ,\”“l\lk‘
x=y of Y
Code genera Another option
Load y into re
Load

- Generate code for procedure body
s, Kaop Basic Ideas

*Temps, locals, parameters all have a “home” on
J N e 0/ rav aq ork1 3 -
High-level IR Low-level IR *When compute, use %rax as working storage

(AST) (CFG) *All subexr ions are computed into temps

Structured
control flow
if/else, loops,

break, continue

*For each computation in expression
Unstructured

control flow
edges = jumps

Destructuring Unstructured

Fetch first operand (on stack) into %rax
control flow ete operand (on stac G

v

jumps only! Apply operator to second operand (on stack) and %rax

Result goes back into %rax

Store result (in %rax) back onto stack

Complex Linearizing | Three-address
expressi > code

x+=y[4xz]/a tl e 4 *z

Two-address
code
mulg $4, %rcx

Generate code for procedure body

Accessing an array element
access templ = value:
mov array index in temp0
mov value y index in %r10], Y%rax

movq %rax, templ

%r10 as array index register
%rax as working register

y code generation template

Generate code for procedure body
ay bounds checks (performed before array access
check if array index < 0
il boun
check if y index >= array bound
ge
jmp e I‘Cl'h‘l']“ array access
boundsbad0:
first parameter is index
second parame element size
call .boundserror

boundsgood0

Generate code for procedure body

ontrol Flow via comparis and jumps

if (condition) { code } else

compute condition

if condition not true to jump to .FalseC:
.True

code for true
jmp .EndIf // skip else case
.FalseCase: neration template for
de for els if then else (conditional branch)

.EndIf:

code for after if

Generate code for procedure body

ng an array element
s temp1 = values[tem
mov -48(%rbp), %r10
mov values(, %r10, 8), %rax

movq %rax, -48(%rbp)

%r10 as array index register

Y%rax as working register

ode generation template

Generate code for procedure body

ay bounds checks (performed before array access
cmp $0, g check if array index temp4 < 0
il .bound
mov -48(%rbp), %rax
cmy $20, %rax check if array index temp4 >= 20
j .boundsbad0
jmp .boundsgood0 perform array access
boundsbad0:
mov -48(%rbp), %rdx Yerax as working
e S e Apply code generation template
call .boundserror
boundsgood0: //array ess to values[temp4]
mov -48(%rbp), %r10
mov values(, %r10, 8), %rax

movq Yrax, -48(%rbp)

Generate code for procedure body

ontrol Flow via con s and jumps
f (condition) { code } code }
compute condition
f condition not true to jump to .ConditionFalse
ConditionTrue:
set temp=1 (true)
jmp .CheckCondition //jump to che
ConditionFalse:
Code generation template for
if then else (conditional branch)
Stores condition e
be more debu
code for true case

jmp .EndIf / skip

code for else case

EndIf: // continuation after if

for procedure bod ons :
‘ o ‘p ; y Code For Conditional Branch in CFG
ntrol Flow via comparisons and jumps
s workir Each basic block has a label
Apply code

Each conditional branch in CFG has

temp2 = true (goes to basic block with label LT)
SO e (goes to basic block with label LF)
ez e Emitted code fo
SRt A e If true, jump to LT
— If false, jump to LF
Emit all basic blocks (in some order), jumps link eve
together

Quick Peephole Optimization Guidelines for the code generator

» Emitted code can look something like:
jmp .BasicBlockO — Do many passes, that do few things (or one thing)
asicBlockO: — Easier to break the p:

Lower the abstraction level slowly

d debug
se can remove jmp instructi Keep the abstractic
— IR should have ‘cor
— At least you should know the semantic
— You may want to run some of the optimizations
between the passes.

Write sanity chec use often

Guidelines for the code generator

* Do the simplest but dumb thing

Guidelines for the code generator

* Remember that optimizations will come later

— it is ok to generate 0 + 1*x + Let the optimizer do the optimizations
— Code is painful to look at; let optimizations improve it Think about what optimizer will need and structure your

code ac

Example: Register allocation, algebraic simplification,
» Make sure you know want can be done at... constant propagation
— Compile time in the compiler Setup a good testing infrastructure
— Runtime using generated code regression tests
« If a input program creates a bug, use it as a

— Learn good t i rocedures

, delta debugging

For the quiz, you should know:

*Basics of x86 assembly

*General principles of memory layout (what it is,
why heap grows up and stack grows down)

* General principles of calling convention

* Why calling conventions exist, motivation for their
tradeoffs

* What callee/caller save registers are, why you want
both

Machine Code Generator Should...

Translate all the instructions in the intermediate
representation to assembly language

Allocate space for the variables, arrays etc.
Adhere to calling conventions
Create the necessary symbolic information

Machines understand...

LOCATION DATA ASSEMBLY INSTRUCTION
0046 8BASFC

0049 863F0
004c 8

8B148500

Extra slides

(we’re not covering them in detail,
but they might be useful for reference)

Machines understand...

LOCATION DATA

0046
0049
004c

Assembly language

Advantages

— Simplifies code generation due to use of symbolic
instructions and symbolic names

— Logical abstraction layer
— Multiple Architectures can describe by a single
assembly language
= can modify the implementation
* macro assembly instructions
Disadvantages
— Additional process of assembling and linking
— Assembler adds overhead

Assembly language Concept of An Object File

+ Relocatable machine language (object modules) ThTwO‘btJ_eld 28 has: t
— Multiple Segments

— all locations(addresses) represented by symbols — Symbol Information
— Mapped to memory addresses at link and load time — Relocation Information

— Flexibility of separate compilation Segments
— Global Offset Table

+ Absolute machine language
dad e hard-coded — Procedure Linkage Table
— addresses are hard-code — Text (code)
— simple and straightforward implementation _ Data
— inflexible -- hard to reload generated code — Read Only Data
— Used in interrupt handlers and device drivers To run program, OS reads object file, builds executable process in memory,
runs process

We will use assembler to generate object files

Overview of a modern ISA From IR to Assembly
* Data Placement and Layout
Global variables
Memory onstants (strings, numbers)

Memory
Registers Object fields Memory

Parameters, local variables
ALU Registers ~
— Temporaries

Control > Cagle

Control

Control

— Read and write data
— Compute

Flow of control

Typical Memory Layout Global Variables

struct { int X, y; double z; } b;
0x800 0000 0000 .
int g;
int a[
Assembler directives (reserve space in data segment)
.comm _a,404
.comm _b,16,3

.comm _g4,2

Addresses

Reserve Men
.comm _a,40,4
.comm _b,16,3

.comm _g4,2

Dynamic Memory Allocation

typedef struct { int x, y; } PointStruct, *Point;

Point p = malloc(sizeof(PointStruct));

What does allocator do?
ext free big enough data block in h

riately adjusts heap data structures

Getting More Heap Memory

Scenario: Current heap goes from oxsoo 0000 000- 0x810 0000 0000
Need to allocate large block of memory
No block that e

0x810 0000 0000

0x800 0000 0000

Struct and Array La

e struct { int x, y; double z; } b;

* inta[10]
— Bytes 0-1: a[0]

— Bytes 2-3: a[1]

— Bytes 18-19: a[9]

Some Heap Data Structures
 Free List (arrows are addresses)

[t——pFF—>[]

* Powers of Two Lists

Getting More Heap Memory

Solution: Talk to OS, increase size of heap (sbrk)
Allocate block in new heap

0x820 0000 0000
0x810 0000 0000 Dynamic
0x800 0000 0000

Stack

The Stack Question:

Arguments 0 to 6 Sintrels=tp) MRS Vhy use a stack? Why not use the heap or pre-allocated in the
are ir 16(s2bp)| arqument 7 data segment’
Yrdi, %orsi, %rdx, |

— %rcx, %r8 and %r9

8(srbp)| Return address
0(srbp)| Previous %
%rbp -8 (%rbp)
marks the beginning
of the current frame ReamEizbr)
Yorsp o (xep) .
Variable size
marks the end
Yorax

return value

Procedure Linkages

Pre-call: « Calling: Caller

Save caller-saved registers e
+Push arguments is caller save
dynamic arca
Prolog: Call foo(A, B,C, D, E,F, G, H,)

-Push old frame pointer + Atolare at -8(Y%rbp) to -72(%tbp) caller saved registers
-Save callee-saved registers
*Make room for temporaries
Epilog:
*Restore callee-saved
S ——
turn:

*Restore caller-saved

+Pop arguments

svious frame pointer previous frame pointer
v 3

n ad
yna
aved

s o . + Callfoo(A,B,C,D.E,F,G, H, 1)
Assume %rbx s used in the function

assed in by pus e cal
and is callee save
— Assume 40 bytes are required for locals
- caller saved registers caller saved registers

argument 9
argument 8
argument 7

xx(%rbp)

S
previous frame pointer

* Returning Callee
— @alculate the Assume the return value is the first temporary
allocate space on the stack
Restore the caller saved
Argunient S Put the return value in ¢

argument §
argument 7 — Tear-down the call stack

return address return address
brevious frame pointer
allice save: :

e o), :

Stack previous frame pointer

Question:

* Returning Caller
+ Assume the return value goes to the first - .
temporary ' ;) advantages of having $r
Restore the stack to reclaim the

argument space
Restore the caller save r

Save the return value

So far we covered.. Outline

CODE [) Generation of expressions and statements

_ Generation of control flow
86-64 Processor
Control Flow Guidelines in writing a code generator
Statements

Expressions Evaluating expression trees

» Expressions are represented as trees Stack model
— Expression may produce a value — Eval left-sub-tree
Or, it may set the condition codes (boolean exprs) Put the results on the stz
* How do you map expression trees to the machines Eval right-sub-tree
How to arrange the evaluation ord
— Where to keep the intermediate values?

* Two approaches
; H\lml 1 perform the operation OP
\ C.

Put the results on the s

Get top two values from the s

— Flat List Model put the results on the stack

* Very inefficient!

Evaluating Expression Trees Issues in Lowering Expressions

* Flat List Model p intermediates to registers?
The idea is to linearize the e sion tree registers are limited

 when the tree is lar

« Allocate tempora for intermediates (all the nodes of the tree)
New temporary for each intermediate
All the temporaries on the stack (for now)
— Each expression is a si addr op too many copies
. ol — don’ t worry, we’ 1l take care of them in the optimization passes
« Code generation for the 3-addr expression .
keep the code generator very simple
Load y into r -
Perform «

N

What about statements Outline

gnment statements are simple * Generation of statements
— Generate code for RHS express * Generation of control flow

Store the resulting G S address * Guidelines in writing a code generator

1t what about conditionals and loop

Two Techniques Template for conditionals

ate Matching if (test)

o o 29 true_ body

-circuit Conditionals e
false_ body

Both are based on structural induction D
Generate a representation for the sub-parts Sz ALt S

)) o <false_body>
ine them into a representation for the whole jmp lab_end

lab_true:
<true_body>
lab_end:

Example Program Example Program

if (ax > bx) if (ax > bx)
dx = ax - bx; dx = ax - bx;
else else

dx = bx - ax; dx = bx - ax;
16 (srbp) , #rl0
<do test> 24 (%rbp), %rll
$r10, %rll
Return addr -
previou n¢ poinfer
Lumln ble px (10
<FALSE BODY>
Lo I\mmh]g pz (30 Im mmhh pz ‘m
jmp L1 Albumenl 9. (30) g ol rgument (&)
10: Argument 8- bx (20)
Argument 7: ax (10)

| Return address |

<FALSE BODY>

<TRUE BODY>
LUCJ\ v h| 27
Local variable d 7

Local variable dz (?

<TRUE BODY>

Example Program Example Program

if (ax > bx)

= ax - bx; dx = ax - bx;

if(ax > bx)
else else
dx = bx - ax; dx = bx - ax;
16 (%rbp) , %rl0 16 (%rbp) , %rl0
24(%rbp), %rll 24(%rbp), %rll
%$rl0, %$rll %$rl0, %$rll
.LO .LO
24 (%rbp), %rl0 pre ame 24 (%rbp), %rl0
16(%rbp), $ril C: 16(%rbp), $ril
%rl0, $rll %rl0, $rll
5r11, -8(%zbp) %r11, -8(%rbp)
; : o
.LO: h\l“m
16(kzbp) , #r10
bp 24 (%rbp), %rll
<TRUE BODY> [CViQuS ot %710, $rll
st #11, -8 (3zbp)

Local \mmlvh. Jz Local \mmlvh. dz

Template for while loops

while (test)
body

Template for while loops

lab_cont:
while (test) <do the test>
body joper lab_body
jmp lab_end

lab body:

<body>

jmp lab_cont

lab_end:

n optimized template

lab_cont:

Daza <do the test>
joper lab_end
-

[CocaVarbies] <body>

-

jmp lab_cont
lab_end:

Question:

t is the template fo

do
body
while (test)

lab_begin:
<body>
<do test>
joper lab_begin

Template for while loops

lab_cont:

while (test) <do the test>

body

joper lab_body

jmp lab_end
lab body:

<body>

jmp lab_cont
lab_end:

Question:

* What is the template f

do
body
while (test)

Exploring Assembly Patterns

struct { int x, y; double z; } b;

int

inta[10]

char *s =

int f(int p) {

int i;
ints;
s=0.0;
for (i=
s=s

0;1<10; it++) {

alil;

return s;

Outline

Generation of statements

Generation of control flow

x86-64 Processor

Guidelines in writing a code generator

