
6.110 Computer
Language Engineering
Re-lecture 4:
Program analysis and optimization

April 3rd, 2024 Terms and glossary ←
Local optimization
Global optimization
Implementation notes

Terms and glossary
• There are a lot of confusing/paradoxical terms in the

literature.

• Optimization: Some "optimizations" actually make the
program worse.

• Better call them "transformations"?

Terms and glossary
• Local optimization: Perform within each basic block

only.

• Global optimization: Perform within a function only.
• Not very "global."
• We focus on dataflow optimizations in this class.

• Whole-program optimization
• Interprocedural analysis/optimization

Terms and glossary
• Static analysis: Estimate, at compile time, what will

happen at runtime
• Need to take into account code paths that might not

actually be executed.

• Dynamic analysis: Profiling, etc. at runtime
• Counts toward the running time of the program
• Must be a priori profitable to even bother checking

• Analyses enable transformations/optimizations!

Terms and glossary
• Biggest constraint: safety. Transformations must not

change program behavior.

• What does it mean for program behavior to be the
same?
• Informally: Intuitive notion of observational equivalence
• Formally: Need to define formal semantics and

equivalence

Terms and glossary
Local optimization ←
Global optimization
Implementation notes

Local optimization
• Optimizations within each basic block only.

• Straight-line code simplifies analysis.
• No loops = perform analysis and transformation together.
• Ad-hoc

• Stepping stones toward global optimization.
• You need to understand straight-line code before you

consider branches/loops.
• Global optimization requires additional, more complicated

dataflow analyses, but has the same idea.

Dead code elimination (DCE)
• Some definitions are useless.

• Definition (Def): assignment of an expression to a variable.
• Use: a reference to a variable to use its value.
• Literally useless!
• Careful about global variables.

• Other optimizations (e.g. common subexpression
elimination) introduce many temporaries.
• Run DCE after those optimizations.

Dead code elimination (DCE)
• Basic idea

• Run through the code backward
• Maintain a set of variables that might be used after the

current statement
• Remove assignment to unused variables

Dead code elimination (DCE)
• Example: Assume only a is global.

a ← x+y // {x,y,z}
t1 ← a // {a,z}
b ← a+z // {a,z}
t2 ← b // {a,b}
c ← t1 // {a,b}
a ← b // {b}
 // {a}

a ← x+y
b ← a+z
c ← a
a ← b

Dead code elimination (DCE)
• Extends naturally to global DCE.

• Perform liveness analysis on control flow graph to figure
out if a definition is used in any path. If not used, delete.

• We'll see soon!

• There are also other sources of dead code besides
unused variables.
• Always-taken/skipped branches (recognized after constant

propagation/folding)

Copy propagation (CP)
• If b←a and later statements use b, why not use a

directly? Copy propagation automates this.

• Not useful on its own. Helps DCE.
• Might be able to eliminate b←a

Copy propagation (CP)
• Idea:

• Process the code in forward order.

• Maintain tmpToVar: which variable to use instead of tmp

• Maintain varToTmps: inverse of tmpToVar

• Note: Might not need to differentiate temporaries and
variables. The word "temporary" is just to make things
easier to understand.

Copy propagation (CP)
• Algorithm:

• When see b←a, set tmpToVar[b]←a.

• When see a right hand side using c, replace with any
element of varToTmps[c].

• Automatically maintain the inverse.

Copy propagation (CP)
• Example:

b ← a
c ← b+1
d ← b
b ← d+c
b ← d

b ← a
c ← a+1
d ← a
b ← a+c
b ← a

Copy propagation (CP)
• Edge case:

a ← b
b ← c
d ← a

a ← b
b ← c
d ← b ???

Copy propagation (CP)
• The algorithm is not correct.

• When see b←c, no varToTmp[_] should equal b.
• Use tmpToVars[b] to figure out which entries to remove.
• Alternatively, only do copy propagation for generated

temps known to be immutable.

• This illustrates the pitfalls of ad-hoc algorithms.
• Dataflow is much more disciplined.
• Dataflow can be applied at statement level too!

Common subexpression elimination (CSE)

• Some expressions are used multiple times. We should
be able to reuse the result from the first calculation.

a ← x+y
b ← a+z
b ← b+y
c ← a+z

Common subexpression elimination (CSE)

• Issue: Need to check if an expression is available

a ← x+y
b ← a+z
b ← b+y
c ← a+z // wants to reuse line 2 but line 3 redefines b

Common subexpression elimination (CSE)

• Fix: Introduce new variables:

a ← x+y
b ← a+z
t ← b
b ← b+y
c ← t

Common subexpression elimination (CSE)

• Idea:

• Uniquely identify each possible RHS expression (e.g. hash)

• Keep track of available expressions (AE)
• An expression becomes stale if one of its operands is re-defined

• If the same expression appears and is available,
• Introduce the temporary variable to store the expression
• Use the temporary variable

Common subexpression elimination (CSE)

• CSE is usually implemented with a technique called
Local Value Numbering (LVN).

• CSE and LVN are different. Some literature treats them
as the same and causes confusion.
• Correct matchup: Local and global CSE using AEs.
• Acceptable: Local and global "CSE" using LVN and GVN.
• Many books/courses (including this):

• Local "CSE" uses LVN
• Global CSE uses AE.
• Different techniques!

Local Value Numbering (LVN)

• This is the one that's taught in lecture.
• Know this for the exam.

• Assign a number to represent a possible value.
Propagate that number to show where that (same)
value ends up.

• Also generate new temporaries to store the
subexpressions.

Local Value Numbering (LVN)

• Example:

a ← x+y // x→v1, y→v2, v1+v2→v3, a→v3
t1 ← a // v3→t1
b ← a+z // z→v4, v3+v4→v5, b→v5
t2 ← b // v5→t2
b ← b+y // v5+v2→v6, b→v6
t3 → b // v6→t3
c ← a+z t2

Local Value Numbering (LVN)

• LVN can give you the effect of other opts (partially!)
• Constant propagation
• Copy propagation
• "there are cases where value numbering is more powerful

than any of the [..] others and cases where each of them is
more powerful than value numbering" (whale book)

y ← a+b
x ← b
z ← a+x

Common subexpression elimination (CSE)

• CSE (whether with AE or LVN) introduces a lot of
temporaries and copies.
• Run CP after CSE. (Might do a few rounds.)
• Run DCE after CP.

Local optimization
• For the exam, you should be able to:

• Manually perform each of these optimizations given a piece
of code

• Give example pieces of code that illustrate these
optimizations

Terms and glossary
Local optimization
Global optimization ←
Implementation notes

Dataflow analysis
• Local optimization but it's not local.

• What's different?
• Branches
• Need to combine results from multiple predecessors
• Need quantification ("there exists a path" or "for all paths")

Liveness
• Determine if a variable is "live" at a given point in CFG

• Sometimes called "Live-Variable Analysis"

• "Live" means the current definition of that variable has
a future use (up to the exit block) without a
redefinition in between.

• Global variables are live at the end
• Local variables are dead at the end

Liveness
• Initialize those sets:
• use[Bi] = variables used in Bi• def[Bi] = variables (re-)defined in Bi

• Solve for
• in[Bi] = live variables at the start of Bi• out[Bi] = live variables at the end of Bi

• Initially assume no variables are live (except globals
at the end)

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b,c}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

use: {}
def: {a}

use: {a}
def: {b}

use: {b}
def: {a}

use: {a}
def: {}

use: {}
def: {c}

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

out[Bi] = ⋃(in[s]; s successor of Bi)

in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

use: {b,c}
def: {b}

a ← 01:

b ← a+12:

c ← c+b3:

a ← b×24:

a < N5:

return c6:

in: {c}
out: {a,c}

in: {a,c}
out: {b,c}

in: {b,c}
out: {b,c}

in: {b,c}
out: {a,c}

in: {a,c}
out: {a,c}

in: {c}
out: {}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {}
out: {}

in: {}
out: {}

in: {a,b,y}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {}
out: {}

in: {}
out: {a,b,y}

in: {a,b,y}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {}
out: {}

in: {a,y,z,t}
out: {a,b,y}

in: {a,b,y}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {}
out: {a,b,y,z,t}

in: {a,y,z,t}
out: {a,b,y}

in: {a,b,y}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

use: {x,y}
def: {a,t,c}

use: {t,z}
def: {b}

use: {y}
def: {c}

in: {b,x,y,z}
out: {a,b,y,z,t}

in: {a,y,z,t}
out: {a,b,y}

in: {a,b,y}
out: {a,b,c}

a ← x+y
t ← a
c ← a+x
x == 0

1:

b ← t+z2:

c ← y+13:

in: {b,x,y,z}
out: {a,b,y,z,t}

in: {a,y,z,t}
out: {a,b,y}

in: {a,b,y}
out: {a,b,c}

Liveness
• Dataflow equations:

• in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

• out[Bi] = in[Bs1] ⋃ in[Bs2] ⋃ … ⋃ in[Bsk]

• out[Bexit] = set of globals

• Satisfies Gen/Kill pattern:

• gen = use, kill = def

Dead code elimination
• If y is dead after the line y←…, delete this line.

• But consider this example (assume x is local):

Needs three iterations of liveness+DCE to optimize!

 // live-in:
x0 ← a0 // {x0,x1,x2}
x1 ← x0 + a1 // {x1,x2}
x2 ← x1 + a2 // {x2}
x3 ← x2 + a3 // {}

Dead code elimination
• in[Bi] = use[Bi] ⋃ (out[Bi] - def[Bi])

still leaves out some information.

• A better, cascading liveness analysis

• If y is not live after y ← …, then we can remove the line
and consider the variables in the RHS as not used.

• in[Bi] = f(out[Bi], Bi)

• Doesn't fit nicely into the gen/kill pattern.
• Alternatively, think of use as a function of Bi and out[Bi]

Available expressions
• An expression is available at point p if

• all paths from initial node to p evaluate this expression
• the evaluation doesn't become stale before reaching p

(i.e. no operands are re-defined on the path)

• One way to identify an expression is by hashing it

• Used to implement global CSE transform

a ← b+c
d ← e+f
f ← a+c

1:

g ← a+c2:
b ← a+d
h ← c+f3:

t0 ← a+c
t1 ← t0+b
t2 ← t1+d
j ← t2

4:

a ← b+c
d ← e+f
f ← a+c

1:

g ← a+c2:
b ← a+d
h ← c+f3:

t0 ← a+c
t1 ← t0+b
t2 ← t1+d
j ← t2

4:

a ← b+c
d ← e+f
f ← a+c

1:

g ← a+c2:
b ← a+d
h ← c+f3:

t0 ← a+c
t1 ← t0+b
t2 ← t1+d
j ← t2

4:

a ← b+c
d ← e+f
f ← a+c
t3 ← f

1:

g ← t32:
b ← a+d
h ← c+f3:

t0 ← t3
t1 ← t0+b
t2 ← t1+d
j ← t2

4:

Storing sub-expression in a
temporary is important! Otherwise,
if f is overwritten here…

Available expressions
• universe = set of ≤2-operand expressions

• in[Bi] = expressions available at the start of Bi

• out[Bi] = expressions available at the end of Bi

• gen[Bi] = expressions computed in Bi

• kill[Bi] = expressions made stale by Bi

Available expressions
• in[Bi] = out[Bp1] ⋂ out[Bp2] ⋂ … out[Bpk]

• out[Bi] = (in[Bi] - kill[Bi]) ⋃ gen[Bi]

• in[Bentry] = 0

• Initially assume out[Bi] = universe ??

Least fixed point
• Iterative dataflow analysis works because of lattice

theory. There is always a unique least fixed point (in
these cases).

• Intuitively, our modifications are monotone.
• Start with empty set then keep union-ing.
• Start with full set then keep intersect-ing.
• Must eventually reach universe or empty set in the worst

case (no useful result for optimization).

Optimism/Pessimism
• Depends on what the analysis is used for

• Analysis is "pessimistic" or "conservative" if stopping
the analysis early means we simply get worse result
(but is still safe)

• Analysis is "optimistic" or "aggressive" if stopping
early means the result could lead to wrong
optimization

Reaching Definitions
• in[Bi] = out[Bp1] ⋃ out[Bp2] ⋃ … out[Bpk]

• out[Bi] = (in[Bi] - kill[Bi]) ⋃ gen[Bi]

• in[Bentry] = 0

• Initially assume out[Bi] = 0

Reaching Definitions
• Uniquely identify each assignment statement ("def")

• A definition reaches a use if there exists a path from
the definition to the use where the definition isn't
killed on the path

• Used for constant propagation.
• If a variable has exactly one reaching definition and the

definition is a constant value.

• Can this be used for copy propagation?

Other dataflow analyses
• Dominance (read Cooper et al.)
• Anticipable expressions
• Upward-exposed uses

• Or combine analysis results:
• Use-def/Def-use chains

Other global optimizations
• Inlining

• How to decide whether to inline or not inline?

• Global code placement
• Place procedures that are used together closer

• Global register allocation
• We will study this!

Global Optimization
• For the exam, you should be able to:

• Perform reaching definitions, available expressions, and
liveness analysis given a CFG (statements or basic blocks)

• Write dataflow equations for these optimizations
• Perform global optimizations.
• Explain advantages and limitations of each optimization

• You will learn more about theory of dataflow analysis
in later lectures
• Lattice theory
• How to design arbitrary analyses

Terms and glossary
Local optimization
Global optimization
Implementation notes ←

Implementation notes
• Use array of nodes, not pointer-and-objects

• Key: Need to be able to remove/add statements
• Especially relevant if you don't use basic blocks
• You will need adjacency list and reverse adj. list

• 1 node = 1 statement is somewhat easier
• More time/memory-consuming but who cares
• No need to propagate information inside a basic block
• One tricky thing: Need to be able to add/remove

nodes/merge points/join points.

Implementation notes
• Make a parameterized dataflow framework

• Parameterized on direction, meet operator (union or
intersection), initial values, transfer function

Implementation notes
• Represent these things differently

• Global variables
• Array variables
• Local variables

• Distinguish vars vs. temps? Debatable.

Implementation notes
• Do not underestimate phase 4

• You will need some analysis results for register allocation
• Be ready to refactor as needed

• Bonus: Learn SSA
• It is the hot new thing in compiler backend development

