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Dataflow Analysis

• Compile-Time Reasoning About
• Run-Time Values of Variables or Expressions
• At Different Program Points

– Which assignment statements produced value of variable at this point?
– Which variables contain values that are no longer used after this 

program point?
– What is the range of possible values of variable at this program point?

Program Representation

• Control Flow Graph
– Nodes N – statements of program
– Edges E – flow of control

• pred(n) = set of all predecessors of n
• succ(n) = set of all successors of n

– Start node n0

– Set of final nodes Nfinal

Program Points

• One program point before each node
• One program point after each node
• Join point – point with multiple predecessors
• Split point – point with multiple successors

Basic Idea

• Information about program represented using values from 
algebraic structure called lattice

• Analysis produces lattice value for each program point
• Two flavors of analysis

– Forward dataflow analysis
– Backward dataflow analysis



Forward Dataflow Analysis
• Analysis propagates values forward through control flow graph with flow 

of control
– Each node has a transfer function f

• Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor nodes to program 
points before successor nodes

– At join points, values are combined using a merge function 
• Canonical Example: Reaching Definitions

Backward Dataflow Analysis
• Analysis propagates values backward through control 

flow graph against flow of control
– Each node has a transfer function f

• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor 
nodes to program points after predecessor nodes

– At split points, values are combined using a merge 
function

– Canonical Example: Live Variables

Summary
• Dataflow analysis computes some information (say, of type I) 

at each statement (or basic block)
• Each statement has a transfer function f: I → I
• Given what information we have at the program point before, and what 

is at the statement, what information do we have atthe program point 
after?

• At each merge points, we combine information from the paths 
using a join function ∨: I × I → I
• Lattices are a way to formalize all this and prove that a 

dataflow analysis always terminates (assuming some 
properties of I, f and ∨)

Partial Orders

• Set P
• Partial order £ such that "x,y,zÎP

– x £ x     (reflexive)
– x £ y and y £ x implies x = y (asymmetric)
– x £ y and y £ z implies x £ z (transitive)

• Can use partial order to define
– Upper and lower bounds
– Least upper bound
– Greatest lower bound

Upper Bounds

• If S Í P then
– xÎP is an upper bound of S if "yÎS. y £ x
– xÎP is the least upper bound of S if

• x is an upper bound of S, and 
• x £ y for all upper bounds y of S

– Ú - join, least upper bound, lub, supremum, sup
• Ú S is the least upper bound of S
• x Ú y is the least upper bound of {x,y}

Lower Bounds

• If S Í P then
– xÎP is a lower bound of S if "yÎS. x £ y
– xÎP is the greatest lower bound of S if

• x is a lower bound of S, and 
• y £ x for all lower bounds y of S

– Ù - meet, greatest lower bound, glb, infimum, inf
• Ù S is the greatest lower bound of S
• x Ù y is the greatest lower bound of {x,y}



Covering

• x< y if x £ y and x¹y 
• x is covered by y (y covers x) if

– x < y, and
– x £ z < y implies x = z

• Conceptually, y covers x if there are no elements between x and 
y

Example
• P = { 000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
• x £ y if (x bitwise and y) = x
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Hasse Diagram
• If y covers x

• Line from y to x
• y above x in diagram

Lattices

• If x Ù y and x Ú y exist for all x,yÎP,   
then P is a lattice.

• If ÙS and ÚS exist for all S Í P,    
then P is a complete lattice.

• All finite lattices are complete

Lattices
• If x Ù y and x Ú y exist for all x,yÎP,   

then P is a lattice.
• If ÙS and ÚS exist for all S Í P,    

then P is a complete lattice.
• All finite lattices are complete
• Example of a lattice that is not complete

– Integers I
– For any x, yÎI, x Ú y = max(x,y), x Ù y = min(x,y)
– But Ú I and Ù I do not exist
– I È {+¥,-¥ } is a complete lattice

Top and Bottom

• Greatest element of P (if it exists) is top
• Least element of P (if it exists) is bottom (^)

Connection Between £, Ù, and Ú
• The following 3 properties are equivalent:

– x £ y
– x Ú y = y 
– x Ù y = x

• Will prove:
– x £ y implies x Ú y = y and x Ù y = x
– x Ú y = y implies x £ y
– x Ù y = x implies x £ y

• Then by transitivity, can obtain 
– x Ú y = y implies x Ù y = x 
– x Ù y = x implies x Ú y = y



Connecting Lemma Proofs

• Proof of x £ y implies x Ú y = y
– x £ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y £ z.
– So y is least upper bound of {x,y} and x Ú y = y

• Proof of x £ y implies x Ù y = x
– x £ y implies x is a lower bound of {x,y}.
– Any lower bound z of {x,y} must satisfy z £ x.
– So x is greatest lower bound of {x,y} and x Ù y = x

Connecting Lemma Proofs

• Proof of x Ú y = y implies x £ y
– y is an upper bound of {x,y} implies x £ y

• Proof of x Ù y = x implies x £ y
– x is a lower bound of {x,y} implies x £ y

Lattices as Algebraic Structures

• Have defined Ú and Ù in terms of £
• Will now define £ in terms of Ú and Ù

– Start with Ú and Ù as arbitrary algebraic operations that satisfy 
associative, commutative, idempotence, and absorption laws

– Will define £ using Ú and Ù
– Will show that £ is a partial order

• Intuitive concept of Ú and Ù as information combination 
operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations Ú and Ù such that
– (x Ú y) Ú z = x Ú (y Ú z) (associativity of Ú)
– (x Ù y) Ù z = x Ù (y Ù z) (associativity of Ù)
– x Ú y = y Ú x   (commutativity of Ú)
– x Ù y = y Ù x   (commutativity of Ù)
– x Ú x = x   (idempotence of Ú)
– x Ù x = x   (idempotence of Ù)
– x Ú (x Ù y) = x (absorption of Ú over Ù)
– x Ù (x Ú y) = x (absorption of Ù over Ú)

Connection Between Ù and Ú 

• x Ú y = y if and only if x Ù y = x
• Proof of x Ú y = y implies x = x Ù y

x = x Ù (x Ú y) (by absorption)
   = x Ù y  (by assumption)

• Proof of x Ù y = x implies y = x Ú y
y = y Ú (y Ù x) (by absorption)
   = y Ú (x Ù y) (by commutativity)
   = y Ú x  (by assumption)
   = x Ú y  (by commutativity)

Properties of £

• Define x £ y if x Ú y = y
• Proof of transitive property. Must show that
  x Ú y = y and y Ú z = z implies x Ú z = z

x Ú z = x Ú (y Ú z) (by assumption)
         = (x Ú y) Ú z (by associativity)
         = y Ú z  (by assumption)
          = z  (by assumption)



Properties of £

• Proof of asymmetry property. Must show that
 x Ú y = y and y Ú x = x implies x = y

x = y Ú x (by assumption)
   = x Ú y (by commutativity)
   = y  (by assumption)

• Proof of reflexivity property. Must show that
 x Ú x = x

 x Ú x = x (by idempotence)

Properties of £

• Induced operation £ agrees with original definitions of Ú and Ù, 
i.e., 
– x Ú y = sup {x, y}
– x Ù y = inf {x, y}

Proof of x Ú y = sup {x, y}

• Consider any upper bound u for x and y.
• Given x Ú u = u and y Ú u = u, must show        x Ú y £ u, i.e., (x 
Ú y) Ú u = u

u = x Ú u  (by assumption)
   = x Ú (y Ú u) (by assumption)
   = (x Ú y) Ú u (by associativity)

Proof of x Ù y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x Ù l = l and y Ù l = l, must show         

l £ x Ù y, i.e., (x Ù y) Ù l = l
l = x Ù l  (by assumption)
  = x Ù (y Ù l)  (by assumption)
  = (x Ù y) Ù l  (by associativity)

Chains

• A set S is a chain if "x,yÎS. y £ x or x £ y 
• P has no infinite chains if every chain in P is finite
• P satisfies the ascending chain condition if     for all sequences x1 
£ x2 £ …there exists n   such that xn = xn+1 = …

For the quiz, you should know:

•Definition of posets, lattices
•Properties of lattices
• Operations: ≤, ∧, ∨
• Lower/upper bounds, top ⊤, bottom ⊥
• Algebraic properties
• Completeness



Application to Dataflow Analysis

• Dataflow information will be lattice values
– Transfer functions operate on lattice values
– Solution algorithm will generate increasing sequence of values at each 

program point
– Ascending chain condition will ensure termination

• Will use Ú to combine values at control-flow join points

Transfer Functions

• Transfer function f: P®P for each node in control flow graph
• f models effect of the node on the program information

Transfer Functions
Each dataflow analysis problem has a set F of 

transfer functions f: P®P
– Identity function iÎF
– F must be closed under composition:             
"f,gÎF. the function h = lx.f(g(x)) ÎF

– Each f ÎF must be monotone:   
 x £ y implies f(x) £ f(y)

– Sometimes all f ÎF are distributive:                       
f(x Ú y) = f(x) Ú f(y)

– Distributivity implies monotonicity

Distributivity Implies Monotonicity

• Proof of distributivity implies monotonicity
• Assume f(x Ú y) = f(x) Ú f(y)
• Must show: x Ú y = y implies f(x) Ú f(y) = f(y)

f(y) = f(x Ú y) (by assumption)
       = f(x) Ú f(y) (by distributivity)

Putting Pieces Together

• Forward Dataflow Analysis Framework
• Simulates execution of program forward with flow of control

Forward Dataflow Analysis
• Simulates execution of program forward with 

flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given inn, computes outn)

• Require that solution satisfy
– "n. outn = fn(inn)
– "n ¹ n0. inn = Ú { outm . m in pred(n) }
– inn0 = I
– Where I summarizes information at start of program



Dataflow Equations

• Compiler processes program to obtain a set of dataflow 
equations

  outn := fn(inn)
  inn := Ú { outm . m in pred(n) }

• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward 
Dataflow Equations

for each n do outn := fn(^)
inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }
while worklist ¹ Æ do
 remove a node n from worklist
 inn := Ú { outm . m in pred(n) }
 outn := fn(inn)
 if outn changed then 
  worklist := worklist È succ(n)

Correctness Argument

• Why result satisfies dataflow equations
• Whenever process a node n, set outn := fn(inn) 

Algorithm ensures that outn = fn(inn) 
• Whenever outm changes, put succ(m) on worklist. 

Consider any node n Î succ(m). It will eventually come 
off worklist and algorithm will set 

  inn := Ú { outm . m in pred(n) }             
to ensure that inn = Ú { outm . m in pred(n) }

• So final solution will satisfy dataflow equations 

Termination Argument

• Why does algorithm terminate?
• Sequence of values taken on by inn or outn is a chain. If values 

stop increasing, worklist empties and algorithm terminates.
• If lattice has ascending chain property, algorithm terminates

– Algorithm terminates for finite lattices
– For lattices without ascending chain property, use widening operator

Widening Operators
• Detect lattice values that may be part of infinitely ascending chain
• Artificially raise value to least upper bound of chain
• Example: 

– Lattice is set of all subsets of integers
– Could be used to collect possible values taken on by variable during 

execution of program
– Widening operator might raise all sets of size n or greater to TOP 

(likely to be useful for loops)

Reaching Definitions
• P = powerset of set of all definitions in program (all subsets of set of 

definitions in program)
• Ú = È (order is Í)
• ^ = Æ
• I = inn0 = ^
• F = all functions f of the form f(x) = a È (x-b)

– b is set of definitions that node kills
– a is set of definitions that node generates

• General pattern for many transfer functions
– f(x) = GEN È (x-KILL)



Does Reaching Definitions Framework Satisfy 
Properties?

• Í satisfies conditions for £
– x Í y and y Í z implies x Í z (transitivity)
– x Í y and y Í x implies y = x (asymmetry)
– x Í x (reflexive)

• F satisfies transfer function conditions
– lx.Æ È (x- Æ) = lx.xÎF (identity)
– Will show f(x È y) = f(x) È f(y) (distributivity)

f(x) È f(y) = (a È (x – b)) È (a È (y – b))
                  = a È (x – b) È (y – b) = a È ((x È y) – b)
                  = f(x È y)

Does Reaching Definitions Framework Satisfy 
Properties?

• What about composition?
– Given f1(x) = a1 È (x-b1) and f2(x) = a2 È (x-b2)
– Must show f1(f2(x)) can be expressed as a È (x - b)

f1(f2(x)) = a1 È ((a2 È (x-b2)) - b1)
              = a1 È ((a2 - b1) È ((x-b2) - b1))
              = (a1 È (a2 - b1)) È ((x-b2) - b1))
              = (a1 È (a2 - b1)) È (x-(b2 È b1))

– Let a = (a1 È (a2 - b1)) and b = b2 È b1

– Then f1(f2(x)) = a È (x – b)

General Result

All GEN/KILL transfer function frameworks 
satisfy
– Identity
– Distributivity
– Composition

Properties

Available Expressions
• P = powerset of set of all expressions in program (all subsets of 

set of expressions)
• Ú = Ç (order is Ê)
• ^ = P 
• I = inn0 = Æ
• F = all functions f of the form f(x) = a È (x-b)

– b is set of expressions that node kills
– a is set of expressions that node generates

• Another GEN/KILL analysis

Concept of Conservatism

• Reaching definitions use È as join
– Optimizations must take into account all definitions that reach along 

ANY path
• Available expressions use Ç as join

– Optimization requires expression to reach along ALL paths
• Optimizations must conservatively take all possible executions 

into account. Structure of analysis varies according to way 
analysis used.

Backward Dataflow Analysis
• Simulates execution of program backward against 

the flow of control
• For each node n, have

– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given outn, computes inn)

• Require that solution satisfies
– "n. inn = fn(outn)
– "n Ï Nfinal. outn = Ú { inm . m in succ(n) }
– "n Î Nfinal = outn = O
– Where O summarizes information at end of program



Worklist Algorithm for Solving 
Backward Dataflow Equations

for each n do inn := fn(^)
for each n Î Nfinal do outn := O; inn := fn(O)
worklist := N - Nfinal 
while worklist ¹ Æ do
 remove a node n from worklist
 outn := Ú { inm . m in succ(n) }
 inn := fn(outn)
 if inn changed then 
  worklist := worklist È pred(n)

Live Variables

• P = powerset of set of all variables in program (all subsets of set 
of variables in program)

• Ú = È (order is Í)
• ^ = Æ
• O = Æ
• F = all functions f of the form f(x) = a È (x-b)

– b is set of variables that node kills
– a is set of variables that node reads

Meaning of Dataflow Results
• Control flow graph and set of variables v in V
• Concept of program state s in ST

• s is a map that stores values of variables v in V
• s[v] is the value of v in state s

• Concept of pair <s,n> - program state s at node n
• n executes in s to produce <s’,n’>

• s’ stores values of variables after n executes
• n’ is next node to execute

Execution of Program 
(program represented as control flow graph)

• Concept of a program execution
• Execution is a sequence (trajectory) of <s,n> pairs
• <s0,n0>; <s1,n1>; …; <sk,nk> 
• <si+1,ni+1> generated from <si,ni> by 
• executing ni in state si

• ni updates variable values in si to produce si+1

• control then flows to ni+1 

• ni+1 is next node to execute after ni   

Relating Program Executions to Dataflow 
Analysis Results

• Meaning of program analysis result is given by 
an abstraction function AF:ST->P
• p = AF(s)
• s in ST is a program state 
• p in P is an element of dataflow lattice P

• Correctness condition: given any 
program execution <s0,n0>; …; <sk,nk> and pair <s,n>
 where s = si and n = ni  for some 0 £ i £ k
then AF(s) £ inn where
 inn is result that program analysis produces 
 at program point before n

Sign Analysis Example

• Sign analysis - compute sign of each variable v
• Base Lattice: P = flat lattice on {-,0,+}

- 0 +

TOP

BOT



Actual Lattice

• Actual lattice records a sign for each variable
– Example element: [a®+, b®0, c®-]

• Function lattice 
– Elements of lattice are functions (maps) from variables to base sign 

lattice
– For function lattice elements f1and f2
– f1 £ f2 if " v  in V. f1(v) £ f2(v)

Interpretation of Lattice Values

• If value of v in lattice is:
– BOT: no information about sign of v
– -: variable v is negative
– 0: variable v is 0 
– +: variable v is positive
– TOP: v may be positive, negative, or zero

• What is abstraction function AF?
– AF([v1,…,vn]) = [sign(v1), …, sign(vn)] 
– Where sign(v) = 0 if v = 0, + if v > 0, - if v < 0

Ä BOT - 0 + TOP

BOT BOT BOT 0 BOT BOT

- BOT + 0 - TOP

0 0 0 0 0 0

+ BOT - 0 + TOP

TOP BOT TOP 0 TOP TOP

Operation Ä on Lattice Transfer Functions

• If n of the form v = c
– fn(x) = x[v®+] if c is positive
– fn(x) = x[v®0] if c is 0
– fn(x) = x[v®-] if c is negative

• If n of the form v1 = v2*v3
– fn(x) = x[v1®x[v2] Ä x[v3]]

• I = TOP (if variables not initialized)
• I = [v1®0, …, vn®0]     (if variables 

initialized to 0)

Example

b = -1 b = 1

a = 1

[a®+][a®+]

[a®+, b®+][a®+, b®-]

[a®+, b®TOP]
c = a*b

[a®+, b®TOP,c ®TOP]

[a®+]

Imprecision In Example

b = -1 b = 1

a = 1

[a®+][a®+]

[a®+, b®+][a®+, b®-]

[a®+, b®TOP]
c = a*b

Abstraction Imprecision:
[a®1] abstracted as [a®+] 
 

Control Flow Imprecision:
[b®TOP] summarizes results of all executions. In any 
execution state s, AF(s)[b]¹TOP
 



General Sources of Imprecision
• Abstraction Imprecision

– Concrete values (integers) abstracted as lattice values (-,0, and +)
– Lattice values less precise than execution values
– Abstraction function throws away information

• Control Flow Imprecision
– One lattice value for all possible control flow paths
– Analysis result has a single lattice value to summarize results of 

multiple concrete executions
– Join operation Ú moves up in lattice to combine values from 

different execution paths
– Typically if x £ y, then x is more precise than y

Why Have Imprecision

• Make analysis tractable
• Unbounded sets of values in execution

– Typically abstracted by finite set of lattice values
• Execution may visit unbounded set of states

– Abstracted by computing joins of different paths

Abstraction Function
• AF(s)[v] = sign of v

– AF([a®5, b®0, c®-2]) = [a®+, b®0, c®-]
• Establishes meaning of the analysis results

– If analysis says variable has a given sign
– Always has that sign in actual execution

• Correctness condition:
• program execution <s0,n0>; …; <sk,nk> and pair <s,n>
• where s = si and n = ni  for some 0 £ i £ k
–" v in V. AF(s)[v] £ inn[v] (n is node for s)
– Reflects possibility of imprecision

Correctness Condition
Start with

program execution <s0,n0>; …; <sk,nk> and pair <s,n>
 where s = si and n = ni  for some 0 £ i £ k
then AF(s) £ inn where
 inn is result that program analysis produces 

 at program point before n
For sign analysis, AF(s) is a map that gives sign of each variable v
 " v. AF(s)[v] £ inn[v] 

 

Sign Analysis Soundness
Given

program execution <s0,n0>; …; <sk,nk> and pair <s,n>
 where s = si and n = ni  for some 0 £ i £ k
then " v. AF(s)[v] £ inn[v] where
 inn is result that program analysis produces 

 at program point before n
Will prove by induction on i 
 (length of execution that produced <si,ni>)

Base Case of Induction

• For base case 
– i = 0, n = n0

–" v. inn0[v] = TOP
• Then " v. AF(s)[v] £ TOP



Induction Step
• Assume " v. AF(s)[v] £ inn[v] for executions of length k
• Prove for computations of length k+1
• Proof:

– Given s = sk+1 (state), n = nk+1 (node to execute next), and inn
– Find sk (the previous state), nk(the previous node), and innk
– By induction hypothesis " v. AF(sk)[v] £ innk[v]
– Case analysis on form of nk

• If nk of the form v = c (other cases are similar), then 
– s[v] = c,       outnk[v] = sign(c), 
– s[x] = sk[x], outnk(x) = innk(x) for x ¹ v
– By induction hypothesis, "x. AF(s)[x] £ outnk[x]
– outnk £ inn (because nk in pred(n) and inn is least upper 

bound of set that includes outnk)
– Therefore "x. AF(s)[x] £ inn[x] (transitivity)

– fjf outnk[x] = innk[x] whenever x ¹ v
– Inn  

– , so         AF(s)[v] = sign(c) = outp [v] £ 
inn[v]

– If x¹v, s[x] = sp [x] and outp [x] = inp[x], so 
 AF(s)[x] = AF(sp)[x] £ inp[x] = outp [x] £ inn[x]

Similar reasoning if p of the form v  = v *v

Augmented Execution States

• Abstraction functions for some analyses require augmented 
execution states
– Reaching definitions: states are augmented with definition that created 

each value
– Available expressions: states are augmented with expression for each 

value

Meet Over Paths Solution
• What solution would be ideal for a forward dataflow analysis problem? 
• Consider a path p = n0, n1, …, nk, n to a node n  (note that for all i 

ni Î pred(ni+1))
• The solution must take this path into account:

fp (^) = (fnk(fnk-1(…fn1(fn0(^)) …)) £ inn

• So the solution must have the property that   Ú{fp (^) . p is  a 
path to n} £ inn

 and ideally 

  Ú{fp (^) . p is  a path to n} = inn

Soundness Proof of Analysis Algorithm

• Property to prove:
For  all paths p to n,  fp (^) £ inn

• Proof is by induction on length of p
– Uses monotonicity of transfer functions
– Uses following lemma

• Lemma:
Worklist algorithm produces a solution such that
 fn(inn) = outn

 if n Î pred(m) then outn £ inm

Proof

• Base case: p is of length 1
– Then p = n0 and fp(^) = ^ = inn0

• Induction step:
– Assume theorem for all paths of length k
– Show for an arbitrary path p of length k+1

Induction Step Proof
• p = n0, …, nk, n
• Must show fk(fk-1(…fn1(fn0(^)) …)) £ inn

– By induction (fk-1(…fn1(fn0(^)) …)) £ innk

– Apply fk to both sides, by monotonicity we get  fk(fk-

1(…fn1(fn0(^)) …)) £ fk(innk) 
– By lemma, fk(innk) = outnk

– By lemma, outnk £ inn

– By transitivity,  fk(fk-1(…fn1(fn0(^)) …)) £ inn



Distributivity

• Distributivity preserves precision
• If framework is distributive, then worklist algorithm produces 

the meet over paths solution
– For all n:

  Ú{fp (^) . p is  a path to n} = inn

Lack of Distributivity Example
• Constant Calculator
• Flat Lattice on Integers

• Actual lattice records a value for each variable
– Example element: [a®3, b®2, c®5]

-1 10

TOP

BOT

-2 2 ……

Transfer Functions

• If n of the form v = c
– fn(x) = x[v®c]

• If n of the form v1 = v2+v3
– fn(x) = x[v1®x[v2] + x[v3]]

• Lack of distributivity
– Consider transfer function f for c = a + b
– f([a®3, b®2]) Ú f([a®2, b®3]) = [a®TOP, b®TOP, c®5]
– f([a®3, b®2]Ú[a®2, b®3]) = f([a®TOP, b®TOP]) = 

[a®TOP, b®TOP, c®TOP]

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a®3, b®2][a®2, b®3]

[a®TOP, b®TOP]
c = a+b

[a®TOP, b®TOP, c ®TOP]

Lack of Distributivity Imprecision: 
[a®TOP, b®TOP, c®5] more precise
 

What is the meet over all paths solution?

How to Make Analysis Distributive

• Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a®3, b®2]}{[a®2, b®3]}

{[a®2, b®3], [a®3, b®2]} 
c = a+b

{[a®2, b®3,c®5], [a®3, b®2,c®5]} 

Issues

• Basically simulating all combinations of values 
in all executions
– Exponential blowup
– Nontermination because of infinite ascending chains

• Nontermination solution
– Use widening operator to eliminate blowup          

(can make it work at granularity of variables)
– Loses precision in many cases



Multiple Fixed Points
• Dataflow analysis generates least fixed point
• May be multiple fixed points
• Available expressions example

a = x +y

i == 0

nopb = x+y;
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Summary

• Formal dataflow analysis framework
– Lattices, partial orders, least upper bound, greatest lower bound, 

ascending chains
– Transfer functions, joins and splits
– Dataflow equations and fixed point solutions

• Connection with program
– Abstraction function AF: S ® P
– For any state s and program point n, AF(s) £ inn

– Meet over all paths solutions, distributivity

For the quiz, you should know:

•How to give transfer functions for simple lattices 
and nodes
•Abstraction functions
•Meet over paths solution
•Causes of imprecision


