MIT 6.1100
6.110 Com pu ter Foundations of Dataflow Analysis

Language Engineering

Martin Rinard
April 17, 2024 . .
P Massachusetts Institute of Technology

Dataflow Analysis Program Representation

* Compile-Time Reasoning About rol Flow Graph

* Run-Time Values of Variables or E — Nodes N — statements of program

At Different Program Points s E — flow of control
I red(n) = set of all predecessors of n
Which assignment statements produced value of variable at this point? ed(n) = set ¢ L
e X N . >c(n) = set of all succe s of n
— Which ables contain values that are no longer used after this .
I — Start node n,
program point?

I . . - . — Set of final nodes N
What is the range of possible values of variable at this program point?

final

Program Points

Basic Idea

One program nt before each node * Information about program represented using values from
algebraic structure called lattice

Join point — point with multiple predecessors * Analy

One program point after each node

produces lattice value for each program point
Split point — point with multiple s * Two flavors of analysis
Forward dataflow analysis

— Backward dataflow ana

Forward Dataflow Analysis

Backward Dataflow Analysis

s propagates values forward through control flow graph with flow GEIVSH agates values backward through control
of control

flow of control
— Each node has a transfer function f — Each node has a transfer function f
* Input — value at program point before node * Input — value at program point after node
* Output — new value at program point after node

— Values flow from program points after predecessor nodes to program — Values flow from pro

po fore su or nodes nodes to program points
— At join points, values are combined using a merge function — At split points, values are combined using a merge

 Canonical Example: Reaching Definitions function

— Canonical Example: Live Variables

Summary Partial Orders

« Dataflow analysis computes some information (say, of type 1) e Set P
at each statement (or basic block)

* Partia r < such that Vx
« Each statement has a transfer function Partial order < such that

 Given what information we have at the program point before, and what

is at the statement, what information do we have atthe program point

7and y < x implies
after?

. L . —x<yandy<zimplies x < transitive
« At each merge points, we combine information from the paths X=Yanty=zumplues x =z (transitive)
using a join function
« Lattices are a way to formalize all this and prove that a

dataflow analysis always terminates (assuming some
properties of I, f and

» Can use partial order to define
— Upper and lower bounds
— Least upper bound

Greatest lower bound

Upper Bounds Lower Bounds

e If S < P then

— xeP is an upper bound o

e If S < P then
— xeP is a lower bound of S if Vy
— x€P is the least upper bound of S if — x€P is the greatest lower bound of
* x is an upper bound of S, and

* x is a lower bound of
 x <y for all upper bounds y of S

* y <x for all lower bounds y of S

join, least upper bound, lub, supremum, sup A S catest lower bound, glb, infimum, inf
s the least upper bound of S

A s the greatest lower bound of S
< vy is the least upper bound of {x,y

lower bound of {x,y}

Covering Example

* x<yifx <y and x#y s X , 110,111}

* x is covered by y (y covers x) if
Hasse Diagram

* Line from y to x

* y above x in diagram

Lattices Lattices

nd x v y exist for all x,yeP,
then P is a lattice. then P is a lattice.
* If AS and VS exist for all S < P, s TS O i ﬂ].l ScP,
. then P is a complete lattice.
then P is a complete lattice. e .
All finite lattices are complete

« All finite lattices are complete - . .
All finite lattices are complete Example of a lattice that is not complete

min(x,y)

{+00,—00 } is a complete lattice

Top and Bottom Connection Between <, A, and v
+ The following 3 properties are equivalent:
» Greatest element of P (if it exists) is top

* Least element of P (if it exists) is bottom (L)

» Will prove:
— x<yimpliesxvy=yandx Ay=x
implies >
X Ay =X implie
* Then by transitivity 1 obtain
y implies x

x implies x

Connecting Lemma Proofs Connecting Lemma Proofs

* Proof of x vy =y implies x <y

Proof of x <y implies x v y
s an upper bound of {x,y} ir

—x <y implies y is 2 r bound of {x,y}.)
und z of {x,y} must satisfy y < z. * Proof of x A y =x implies x <y

/ is least upper bound of {x,y} and > x is a lower bound of {x,y} implies x <y

Proof of x <y implies x A
— x <y implies x is a lower bound of {x,y}.
— Any lower bound z of {x,y} must satisfy z < x.

So x is greatest lower bound of {x,y} and x Ay =x

Lattices as Algebraic Structures Algebraic Properties of Lattices

» Have defined v and A in terms of < Assume arbitrary operations v and A such that

| now define < in terms of v and A /z) (associativity of v)
Start with rary alg operations that satisfy
otence, and absorption laws

(associativity)

(commutativity of v)
— Will define < usin (commutativity of A)
(idempotence of v)

* Intuitive ¢ (idempotence of A)

operators (or, and) (absorption of v over

(absorption of A over v

Connection Between A and v Properties of <

* Definex<yifxv
* Proof of transiti roperty. Must show that
yandyvz=zimpliesxvz=z
z) (by assumption)
s z (by associativity)
(by assumption)

(by assumption)

Properties of <

Properties of <

ow that * Induced operation < agrees with original definitions of v and A,
i
X Vy=sup {X,y}

—x Ay =inf {x, y}

rty. Must show that

(by idempotence)

Proof of x v y =sup {x, y} Proof of x A y = inf {x, y}

» Consider any lower bound I for x and y.

» Consider any upper bound u for x and y.
* Givenx Al=1and y A 1 =1, must show

SEAy)AL=1
(by assumption) (by assumption)
(by assumption) yA (by assumption)

* Givenx vu=uandy v u=u, must show XVvy<uie,(x

(by associativity) (by associativity)

Chains For the quiz, you should know:

* AsetSisachainif Vx,yeS.y<xorx<y Definiti ‘ ts latti
¢ P has no infinite chains rery chain in P is finite ennt I(?n 0 posc? S, lattices
« P satisfies the ascending chain condition if ~ for all sequences X, * Propertlgs O.f lattices
<X, < ...there exists n such that * Operations: <, A, V
» Lower/upper bounds, top T, bottom L
« Algebraic properties
* Completeness

Application to Dataflow Analysis Transfer Functions
Dataflow information will be lattice values

 Transfer function f: P—>P for each node in control flow graph
— Transfer functions operate attice values

» fmodels effect of the node on the program information
olution algorithm will gen

am point

rate increasing sequence of values at each

Ascending chain condition will ensure termination

Will use v to combine values at control-flow join points

Transfer Functions

Distributivity Implies Monotonicity

Each dataflow analysis problem has a set F of

.. Proof of distributivity implies monotonicity
transfer functior P—P

P e Assume f
— Identity function ieF ssume

— F must be closed under composition: * Must st
b . the function h = Ax.f(g(x)) €F

(by assumption)
Each f eF must be monotone: f(x) v f(y) (by distributivity)
y implies <f(y)
T are distributive:
v {(y)

— Distributivity implies monotonicity

Putting Pieces Together Forward Dataflow Analysis

* Simulates execution of program forward with
» Forward Dataflow Analysis Framework

flow of control

+ Simulates execution of program forward with flow of control * For each node n, have

— in, — value at program point before n
— out, — value at | m point after n
f, — transfer function for n (given in,, computes out,)
» Require that solution satisfy
n. out, = f,(in,)
#n,. in,= Vv { out,, . m in pred(n) }
—ing =1

— Where [summarizes information at start of program

Dataflow Equations

» Compiler processes program to obtain a set of dataflow
equations
out, := f,(in,)

in, := Vv { out,, . m in pred(n) }

» Conceptually separates analysis

Correctness Argument

Why result satisfies dataflow equations

s a node n, set out, = f,(in,)

at out, = f,(in,)
Whenever out,, changes, put succ(m) on worklist.
Consider any node n c(m). It will eventually come
oft worklist and algorithm will set
in, := v { out,, . m in pred(n) }
to ensure that in, = v { out,, . m in pred(n) }

So final solution will satisfy dataflow equations

Widening Operators

lues that may be part of infinitely
ise value to least upper bound of ¢
Example:
— Lattice is set of all subsets of integers
Could be used to collect possible values taken on by variable during
execution of program
— Widening operator might raise all sets of size n or greater to TOP
(likely to be useful for loops)

Worklist Algorithm for Solving Forward
Dataflow Equations

for each n do out, := (1)
inyg :=I; out,g := fo(I)
worklist :==N - { n, }
while worklist # & do

remove a node n from worklist
in, { out,,, . m in pred(n) }
out, := f,(in,)
if out, changed then

worklist := worklist U succ(n)

Termination Argument

y does algorithm terminate?
Sequence of values taken ¢ 7 in, or out,, is a chain. If values
stop increasing, worklist empties and algorithm terminates.
[f lattice has ascending chain property, algorithm terminates
orithm terminates for finite lattices

— For lattices without ascending chain property, use widening operator

Reaching Definitions
t of all definitions in program (all subsets of set of

am)

|

F = all functions f of the form f(x) = a U (x-b)

[=in,,
b is set of definitions that node kills
a is set of definitions that node g es
General pattern for many transfer functions
— f(x) = GEN U (x-KILL)

Does Reaching Definitions Framework Satisfy

Properties?
sfies conditions for <
yandyc zi z (transitivity)
and y implies y = x (asymmetry)
¢ < x (reflexive)
sfies transfer function conditions
J U (x- 2 3 identity)
— Will show f(x (y) (distributivity)
fx)Ufly)=(@u (x-b)) U (au (y—b))

x-b)u(y-b)=au((xuy)—b)

General Result

All GEN/KILL transfer function frameworks
satisfy
Identity
— Distributivity
— Composition

Properties

Concept of Conservatism

» Reaching definitions use U as join

— Optimizations must take into account all definitions that reach along
ANY path

ptimization requires expression to reach along ALL paths
mizations must conservatively take all possible executi
into account. Structure of analy

aries according to way
analysis used.

Does Reaching Definitions Framework Satisfy
Properties?

* What about composition?

— Given f;(x) = a, U (x-b,) and f.

— Must show f(f5(x)) can be ex;

i (f5(x §
by) L

(a, v b)) U ((x
=(a; U b;)) U (x-(b, U b))
—Leta=(a; U (a 1)) and b=Db, U b,

Then f,(fy(x)) =a U (x — b)

Available Expressions

» P = powerset of set of all expressions in program (all subsets of
set of expressions)
= (order is D)
« |=P
e I=in, =9
¢ F = all functi f of the form f(x) =a L
— b is set of expressions that node kills
— a is set of expressions that node generates

* Another GEN/KILL analysis

Backward Dataflow Analysis
 Simulates execution of program backward against
the flow of control
 For each node n, have
— in, — value at program point before n
out, — value at program point after n
— f,, — transfer function for n (given out,, computes in,)
» Require that solution satisfies
in, = f,(out,)
Ninat- OUt, = Vv { in,, . m in succ(n) }
n € Ngp = out,

Where O summarizes information at end of program

Worklist Algorithm for Solving . .
Backward Dataflow Equations Lo Vil

for each n do in, := (L) P = powerset of set of all variables in program (all subsets of set

for each n € Ny, do out, := O; in, := £,(O) of variables in program)

worklist := N - Ng, o1

: v =U (order is ©)
while worklis: do

. . 1=
remove a node n from worklist
out, :=v { in, . m in succ(n) } 0=y

in, = f,(out,) F = all functions f of the form f(x) =a U
if in, changed then — b is set of variables that node kills
worklist := worklist U pred(n) a is set of variables that node reads

. Execution of Program
Meaning of Dataflow Results =
(program represented as control flow graph)
and set of variables v in V \ . .
. + Concept of a program executio:
m state s in ST . . .
X o + Execution is a sequence (trajectory) of <s,n>
5 is a map that stores values of variables v in V
. L. ® <SpNy~, - SL”\
* s[v] is the value of v in state s
* <sjy N> generated sin
* Co > ogram state s at node n « executing n; in state s;
* nexecutes in s to produce <s’,n’> * n;updates e values in s; to produce s;;
* s’ stores values of variables after n executes « control then flows to n;,
* n’ is next node to execute * n;;; is next node to execute after n;

Relating Program Executions to Dataflow . .
Analysis Results Sign Analysis Example
* Meaning of program analy sult is given by)
raction function AF:ST->P Sign analysis mpute sign of each variable v

¢ Base Lattice: P = flat lattice on {-,0,+}
s a program state TOP
n element of dataflow lattice P
ectness condition: given any

program execution <s,ny>; ...; <s, n,> and pair <s,n>

where s =s; and n = n; for some 0 <i<k
then AF(s) < in, where

in,, is result that program analysis produces

at program point before n

Actual Lattice Interpretation of Lattice Values

» Actual lattice records a sign for each variable * Ifvalue of v in lattice is:

— Example element: [a—+, b—0, c—-] — BOT: no information about sign of v

» Function lattice riable v is negative
Elements of lattice are functions (maps) from variables to base sig
lattice

— For function lattice elements fjand may be positive, negative, or zero

—fi<BHif Vv in V. £;(v) <f(v) abstraction function AF?

AF([v; vol) =

— Where sign(v) =0ifv=0,+if v>0, - if v

Operation ® on Lattice Transfer Functions

If n of the form v=c

— f,(x) = x[v—>+] if ¢ is positive

— f,(x) =x[v—>0] ifcis 0

— f,(x) = x[v—>-] if c is negative

If n of the form v; = v,*v;3

— f,(x) = x[v;—>x[v,] ® x[v3]]

I =TOP (if variables not initialized)

[=[v;—0, ..., v,—0] (if variables
initialized to 0)

Example

Imprecision In Example

Abstraction Imprecision:

[a—1] abstracted as [a—+] a=l

[a—>+]

[a>+, b—>-] [a—>+, b—>+] [a>+, b>-] [a—>+, b—>+]

[a—>+, b>TO [a—>+, b>TO

Control Flow Imp: aro

[b—>TOP] summari ilts of all executions. In any
execution state s, AF(s)[b]#TOP

a*o
[a—>+, b>TOP,c ->TOP]

Why Have Imprecision

General Sources of Imprecision

* Make analysis tractable

» Unbounded sets of values in execution
ally abstracted by finite set of lattice

unded set of states

traction Imprecision

Concrete values (

gers) abstracted as lattice values (-,0, and +)
— Lattice values less precise than execution values
i lues

Abstraction function throws away

 Control Flow Impr
— One lattice value for all possible control flow paths

ion n may Vvisit ur
ed by computing joins of different paths

Analysis result has a single lattice value to summarize

multiple conc executions

Join operation v moves up in lattice to combine values from
different execution paths
<y, then X is more precise than y

Correctness Condition

Abstraction Function
Start with
program execution <s,ny>; ...; <s, n,> and pair <s

* AF(s)[v] =sign of v
where s =s; and n = n; for some 0 <i<k

AF([a—>5, b—0, c—>-2]) = [a—>+, b—0, c—>-]
Establishes meaning of the analysis results
— If anal then AF(s) < in, where
Always has that sign in actual execution t program analysis produces

ys variable has a given sign
in,, is result tl
Correctness condition: at progre oint before n
. For sign analysis s a map that gives sign of each variable v
* program execu < £ 0 s - and pair <s,n> in[v]
N B <ing[v
* where s =s; and n = n; for some 0 <i<k "
V vin V. AF(s)[v] < in,[v] (n is node for s)

Y,

— Reflects possibility of imprecision

Base Case of Induction

Sign Analysis Soundness
i « For base case
program executior 3 ...; <siny> and pair <s,n>
where s =s; and n = n; for some 0 <i<k ! My
then V v. AF(s)[v] < in,[v] where —V v. iny[v] = TOP
in,, is result that program ar

e Then V v. AF(s)[v] < TOP

at program point before n

ove by induction on i
(length of execution that produced -

Induction Step
* Assume AF(s)[v] < in,[v] for executions of length k
 Prove for computations of length k+1
* Proof:
— Given s = s, (state), n = n, (node to cute next), and in,

— Find s, (the previous state), n,(the previous node), and in

nk
By induction hypothesis V v. AF(s)[v] < iny[Vv]

— Case analysis on form of n;
« If n, of the form v = ¢ (other ¢ are similar), then
s[vl]=c out,, [v] = sign(c),
s[x] = s, [x], out, (x) = in,,(x) for x # v
— By induction hypothesis, Vx. AF(s)[x] < out,,[x]

out,, <in, (use ny in pred(n) and in, is least upper
bound of set that includes out,;)

— Therefore Vx. AF(s)[x] < in,[x] (transitivity)

Meet Over Paths Solution

What solution would be ideal for a forward dataflow analysis problem?

er a path p .., y, nto anode n (note that for all i
n; € pred(n;;;))

The solution must take this path into account:
fy (1) = (Cu(faer (- fi (Fro(D))) <imy,

So the solution must have the property that vif, (L) .pis a
path to n} <in,

and ideally

.pis apathton} =in,

Proof

Base case: p is of length 1
— Then p yand fi,(1) = L =1iny
Induction step:

sume theorem for all paths of length k

— Show for an arbitrary path p of length k+1

Augmented Execution States

straction functions for some analyses require augmented
execution states

Reaching definition ates are augmented with definition that
each value

— Available expressions: states are augmented with expression for each

value

Soundness Proof of Analysis Algorithm

* Property to
For all paths p ton, f, (1) <in,
* Proof is by induction on length of p
Uses monotonicity of transfer functions
ses following lemma
* Lemma:
Worklist algorithm produces a solution such that
f,(in,) = out,

if n € pred(m) then out, < in

m

Induction Step Proof

* p=ny, ...,
e Must show fi(fi_;(...f,;(f,0(L)) ...)) <in,
— By induction (fi_(...f,;(fo(L)) ...)) <iny
/ / fi to both sides, b
1(- (o) --2)) < £
— By lemma, f,(in,,) = outy
— By lemma, out,, < in,

— By transitivity, fi(fi.(...fu1(f

Distributivity Lack of Distributivity Example

 Distributivity preserves precision » Constant Calculator

If framework is distributive, then worklist algorithm produces * Flat Lattice on Integers
the meet over paths solution
— For all n:

v{f, (L) .pis apathton}=in,
BOT

e Actual lattice records a value for each variable

— Example element: [a—3, b—2, c—>5]

Transfer Functions

Lack of Distributivity Anomaly

e Ifn ofthe formv=c
— f,(x) = x[v—c] -

 Ifn of the form v, = v,+v;
£,(x) = X[v;—>X[va] + X[v3]] [a—2, b—>3] [a—3, b—>2]

» Lack of distributivity
Consider transfer function fforc=a+b =102 bHTOP]‘ b Lack of Distributivity Imprecision:
f([a—3, b-2]) v f([a—2, b—>3]) = [a—>TOP, b>TOP, c—>5] =870 14 ,TOP, b—>TOP, c—>5] more
f([a—3, b—>2]v[a—>2, b—3]) = f([a>TOP, b>TOP]) = [a—>TOP, b>TOP, ¢ >TOP]
[a>TOP, b>TOP, c—>TOP]

What is the meet over all paths solution?

How to Make Analysis Distributive Issues

» Keep combinations of values on different paths Basically simulating all combinations of values

in all executions
Exponential blowup

— Nontermination because of infinite ascending chains
{[a>2, b—>3]} {[a—>3, b>2]} Nontermination solution
— Use widening operator to eliminate blowup
{ {[a—2, b>3], [a=33, b—>2]} (can make it work at granularity of variables)

c=atb — Loses precision in many cases

{[a—>2, b—>3,c—>5], [a—>3, b—>2,c—>5]}

Multiple Fixed Points

» Dataflow analysis generates least fixed point
* May be multiple fixed points

» Available expressions example

For the quiz, you should know:

*How to give transfer functions for simple lattices
and nodes

* Abstraction functions
* Meet over paths solution
* Causes of imprecision

Summary

» Formal dataflow analysis framework

— Lattices, partial orders, least upper bound, greatest lower bound,

chains
Transfer functions, joins and splits

— Dataflow equations and fixed point solutions

» Connection with program
action function AF: S — P
and program point n, AF(s) < in,

all paths solutions, distributivity

