6.110 Computer Language Engineering

Re-lecture 5

April 17, 2024

MIT 6.1100 Foundations of Dataflow Analysis

Martin Rinard

Massachusetts Institute of Technology

Dataflow Analysis

- Compile-Time Reasoning About
- Run-Time Values of Variables or Expressions
- At Different Program Points
 - Which assignment statements produced value of variable at this point?
 - Which variables contain values that are no longer used after this program point?
 - What is the range of possible values of variable at this program point?

Program Representation

- Control Flow Graph
 - Nodes N statements of program
 - Edges E flow of control
 - pred(n) = set of all predecessors of
 - succ(n) = set of all successors of n
 - Start node no
 - Set of final nodes N_{final}

Program Points

- One program point before each node
- One program point after each node
- Join point point with multiple predecessors
- Split point point with multiple successors

Basic Idea

- Information about program represented using values from algebraic structure called lattice
- Analysis produces lattice value for each program point
- Two flavors of analysis
 - Forward dataflow analysis
 - Backward dataflow analysis

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 - Input value at program point before node
 - Output new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 - Input value at program point after node
 - Output new value at program point before node
 - Values flow from program points before successon nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Summary

- Dataflow analysis computes some *information* (say, of type I) at each statement (or basic block)
- Each statement has a transfer function $f: I \rightarrow I$
 - Given what information we have at the program point before, and what is at the statement, what information do we have atthe program point after?
- At each merge points, we combine information from the paths using a *join* function $V: I \times I \to I$
- Lattices are a way to formalize all this and prove that a dataflow analysis always terminates (assuming some properties of I, f and V)

Partial Orders

- Set F
- Partial order \leq such that $\forall x,y,z \in P$

 $-x \le x$ (refle

 $-x \le y$ and $y \le x$ implies x = y (asymmetric)

 $-x \le y$ and $y \le z$ implies $x \le z$ (transitive)

- Can use partial order to define
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- If $S \subseteq P$ then
 - $-x \in P$ is an upper bound of S if $\forall y \in S$. $y \le x$
 - $-x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - $-\vee$ join, least upper bound, lub, supremum, sup
 - $\bullet \lor S$ is the least upper bound of S
 - $x \vee y$ is the least upper bound of $\{x,y\}$

Lower Bounds

- If $S \subseteq P$ then
 - $-x \in P$ is a lower bound of S if $\forall y \in S$. $x \le y$
 - $-x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \le x$ for all lower bounds y of S
 - \wedge meet, greatest lower bound, glb, infimum, inf
 - A S is the greatest lower bound of S
 - $x \wedge y$ is the greatest lower bound of $\{x,y\}$

Covering

- x < y if $x \le y$ and $x \ne y$
- x is covered by y (y covers x) if
 - -x < v, and
 - $-x \le z < y \text{ implies } x = z$
- Conceptually, y covers x if there are no elements between x and y

Example

- P = { 000, 001, 010, 011, 100, 101, 110, 111} (standard boolean lattice, also called hypercube)
- $x \le y$ if (x bitwise and y) = x

Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram

Lattices

- If x ∧ y and x ∨ y exist for all x,y∈P, then P is a lattice.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
- All finite lattices are complete

Lattices

- If x ∧ y and x ∨ y exist for all x,y∈P then P is a lattice.
- If ∧S and ∨S exist for all S ⊆ P, then P is a complete lattice.
- All finite lattices are complete
- Example of a lattice that is not complete
 - Integers I
 - For any $x, y \in I$, $x \lor y = max(x,y)$, $x \land y = min(x,y)$
 - But ∨ I and ∧ I do not exist.
 - $I \cup \{+\infty, -\infty\}$ is a complete lattice

Top and Bottom

- Greatest element of P (if it exists) is top
- Least element of P (if it exists) is bottom (\perp)

Connection Between \leq , \wedge , and \vee

- The following 3 properties are equivalent
 - x ≤ v
 - $x \lor y = y$
 - $-x \wedge y = 2$
- Will prove:
 - $-x \le y \text{ implies } x \lor y = y \text{ and } x \land y = x$
 - $x \lor y = y \text{ implies } x \le y$
 - $-x \wedge y = x \text{ implies } x \le$
- Then by transitivity, can obtain
 - $-x \lor y = y \text{ implies } x \land y = x$
 - $-x \wedge y = x \text{ implies } x \vee y = y$

Connecting Lemma Proofs

- Proof of $x \le y$ implies $x \lor y = y$
 - $-x \le y$ implies y is an upper bound of $\{x,y\}$.
 - Any upper bound z of $\{x,y\}$ must satisfy $y \le z$.
 - So y is least upper bound of $\{x,y\}$ and $x \vee y = y$
- Proof of $x \le y$ implies $x \land y = x$
 - $-x \le y$ implies x is a lower bound of $\{x,y\}$.
 - Any lower bound z of $\{x,y\}$ must satisfy $z \le x$.
 - So x is greatest lower bound of $\{x,y\}$ and $x \wedge y = x$

Connecting Lemma Proofs

- Proof of $x \vee y = y$ implies $x \leq y$
 - -y is an upper bound of $\{x,y\}$ implies $x \le y$
- Proof of $x \wedge y = x$ implies $x \leq y$
 - -x is a lower bound of $\{x,y\}$ implies $x \le y$

Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
 - Start with \vee and \wedge as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define ≤ using \vee and \wedge
 - Will show that ≤ is a partial order
- Intuitive concept of ∨ and ∧ as information combination operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that

```
-(x \lor y) \lor z = x \lor (y \lor z) \quad \text{(associativity of } \lor)
-(x \land y) \land z = x \land (y \land z) \quad \text{(associativity of } \land)
-x \lor y = y \lor x \quad \text{(commutativity of } \lor)
-x \land y = y \land x \quad \text{(commutativity of } \land)
```

 $-x \wedge y = y \wedge x$ (commutativity of \wedge) $-x \vee x = x$ (idempotence of \wedge) $-x \wedge x = x$ (idempotence of \wedge) $-x \vee (x \wedge y) = x$ (absorption of \vee over \wedge)

 $-x \wedge (x \vee y) = x$ (absorption of \wedge over \vee)

Connection Between ∧ and ∨

```
• x \lor y = y if and only if x \land y = x
```

```
• Proof of x \lor y = y implies x = x \land y
```

 $x = x \land (x \lor y)$ (by absorption)

 $= x \wedge y$ (by assumption)

• Proof of $x \wedge y = x$ implies $y = x \vee y$

 $y = y \lor (y \land x)$ (by absorption)

 $= y \lor (x \land y)$ (by commutativity)

 $= y \lor x$ (by assumption)

 $= x \vee y$ (by commutativity)

Properties of ≤

- Define $x \le y$ if $x \lor y = y$
- Proof of transitive property. Must show that

 $x \lor y = y \text{ and } y \lor z = z \text{ implies } x \lor z = z$

 $x \lor z = x \lor (y \lor z)$ (by assumption)

 $= (x \lor y) \lor z$ (by associativity)

 $= y \lor z$ (by assumption)

= z (by assumption)

Properties of ≤

• Proof of asymmetry property. Must show that

```
x \lor y = y and y \lor x = x implies x = y

x = y \lor x (by assumption)

= x \lor y (by commutativity)

= y (by assumption)
```

• Proof of reflexivity property. Must show that

```
x \lor x = x

x \lor x = x (by idempotence)
```

Properties of ≤

• Induced operation \leq agrees with original definitions of \vee and \wedge , i.e.,

```
-x \lor y = \sup \{x, y\}-x \land y = \inf \{x, y\}
```

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \le u$, i.e., $(x \lor y) \lor u = u$

```
u = x \lor u (by assumption)
= x \lor (y \lor u) (by assumption)
= (x \lor y) \lor u (by associativity)
```

Proof of $x \wedge y = \inf \{x, y\}$

- Consider any lower bound 1 for x and y.
- Given $x \wedge 1 = 1$ and $y \wedge 1 = 1$, must show $1 \leq x \wedge y$, i.e., $(x \wedge y) \wedge 1 = 1$

```
1 = x \land 1 (by assumption)
= x \land (y \land 1) (by assumption)
= (x \land y) \land 1 (by associativity)
```

Chains

- A set S is a chain if $\forall x,y \in S$. $y \le x$ or $x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_1 \le x_2 \le \dots$ there exists n such that $x_n = x_{n+1} = \dots$

For the quiz, you should know:

- Definition of posets, lattices
- Properties of lattices
 - Operations: ≤, ∧, ∨
 - Lower/upper bounds, top T, bottom ⊥
 - Algebraic properties
 - Completeness

Application to Dataflow Analysis

- Dataflow information will be lattice values
 - Transfer functions operate on lattice values
 - Solution algorithm will generate increasing sequence of values at each program point
 - Ascending chain condition will ensure termination
- Will use \vee to combine values at control-flow join points

Transfer Functions

- Transfer function f: $P \rightarrow P$ for each node in control flow graph
- f models effect of the node on the program information

Transfer Functions

Each dataflow analysis problem has a set F of transfer functions f: P→P

- Identity function i∈F
- F must be closed under composition: $\forall f,g \in F$. the function h = $\lambda x.f(g(x)) \in F$
- Each f ∈F must be monotone: $x \le y$ implies $f(x) \le f(y)$
- Sometimes all f ∈ F are distributive: $f(x \lor y) = f(x) \lor f(y)$
- Distributivity implies monotonicity

Distributivity Implies Monotonicity

- Proof of distributivity implies monotonicity
- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$ $f(y) = f(x \lor y)$ (by assumption)
 - $= f(x) \vee f(y)$ (by distributivity)

Putting Pieces Together

- Forward Dataflow Analysis Framework
- Simulates execution of program forward with flow of control

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
 - in_n value at program point before r
 - out_n value at program point after n
 - $-f_n$ transfer function for n (given in_n, computes out_n)
- Require that solution satisfy
 - $\forall n. out_n = f_n(in_n)$
 - $\ \forall n \neq n_0. \ in_n = \vee \ \{ \ out_m \ . \ m \ in \ pred(n) \ \}$
 - $-in_{n0} = I$
 - Where I summarizes information at start of program

Dataflow Equations

• Compiler processes program to obtain a set of dataflow equations

```
out_n := f_n(in_n)
 in_n := \vee \{ out_m . m in pred(n) \}
```

• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

```
\begin{split} &\text{for each } n \text{ do out}_n := f_n(\bot) \\ &\text{in}_{n0} := I; \text{ out}_{n0} := f_{n0}(I) \\ &\text{worklist} := N - \{ n_0 \} \\ &\text{while worklist} \neq \varnothing \text{ do} \\ &\text{remove a node } n \text{ from worklist} \\ &\text{in}_n := \vee \{ \text{ out}_m \cdot m \text{ in pred}(n) \} \\ &\text{out}_n := f_n(\text{in}_n) \\ &\text{if out}_n \text{ changed then} \\ &\text{worklist} := \text{worklist} \cup \text{succ}(n) \end{split}
```

Correctness Argument

- Why result satisfies dataflow equations
- Whenever process a node n, set $out_n := f_n(in_n)$ Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put succ(m) on worklist.
 Consider any node n ∈ succ(m). It will eventually come off worklist and algorithm will set

```
\begin{split} & in_n := \vee \; \{ \; out_m \; . \; m \; in \; pred(n) \; \} \\ & to \; ensure \; that \; in_n = \vee \; \{ \; out_m \; . \; m \; in \; pred(n) \; \} \end{split}
```

• So final solution will satisfy dataflow equations

Termination Argument

- Why does algorithm terminate?
- Sequence of values taken on by in, or out, is a chain. If values stop increasing, worklist empties and algorithm terminates.
- If lattice has ascending chain property, algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without ascending chain property, use widening operator

Widening Operators

- Detect lattice values that may be part of infinitely ascending chain
- Artificially raise value to least upper bound of chair
- Example:
 - Lattice is set of all subsets of integers
 - Could be used to collect possible values taken on by variable during execution of program
 - Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)

Reaching Definitions

- P = powerset of set of all definitions in program (all subsets of set of definitions in program)
- $\vee = \cup$ (order is \subset)
- ⊥ = Ø
- $I = in_{n0} = \bot$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of definitions that node kills
 - $-\,$ a is set of definitions that node generates
- · General pattern for many transfer functions
 - $f(x) = GEN \cup (x-KILL)$

Does Reaching Definitions Framework Satisfy Properties?

- catisfies conditions for ≤
 - $-x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (transitivity)
 - $-x \subseteq y$ and $y \subseteq x$ implies y = x (asymmetry)
 - $-x \subseteq x$ (reflexive)
- F satisfies transfer function conditions
 - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F \text{ (identity)}$
 - Will show $f(x \cup y) = f(x) \cup f(y)$ (distributivity
 - $f(x) \cup f(y) = (a \cup (x b)) \cup (a \cup (y b))$
 - $= f(x \cup y)$

Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
 - Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$
 - Must show $f_1(f_2(x))$ can be expressed as a \cup (x b)
 - $(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) b_1)$
 - $= \mathbf{a}_1 \cup ((\mathbf{a}_2 \mathbf{b}_1) \cup ((\mathbf{x} \mathbf{b}_2) \mathbf{b}_1))$
 - $= (a_1 \cup (a_2 b_1)) \cup ((x b_2) b_1))$
 - Let $a = (a_1 \cup (a_2 b_1))$ and $b = b_2 \cup b_1$
 - Then $f_1(f_2(x)) = a \cup (x b)$

General Result

All GEN/KILL transfer function frameworks satisfy

- Identity
- Distributivity
- Composition

Properties

Available Expressions

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\vee = \cap$ (order is \supseteq)
- 1 = 1
- $I = in_{n0} = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use ∪ as join
 - Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account. Structure of analysis varies according to way analysis used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, have
 - in_n value at program point before n
 - out_n value at program point after n
 - $-f_n$ transfer function for n (given out_n, computes in_n)
- Require that solution satisfies
- $-\forall n. in_n = f_n(out_n)$
- $\forall n \notin N_{\text{final}}$. out_n = $\vee \{ \text{ in}_{\text{m}} \text{ . m in succ}(n) \}$
- $\forall n \in N_{final} = out_n = O$
- Where O summarizes information at end of program

Worklist Algorithm for Solving Backward Dataflow Equations

```
\begin{split} &\text{for each } n \text{ do } in_n \coloneqq f_n(\bot) \\ &\text{for each } n \in N_{final} \text{ do } out_n \coloneqq O; \text{ } in_n \coloneqq f_n(O) \\ &\text{worklist } \coloneqq N - N_{final} \\ &\text{while worklist } \neq \varnothing \text{ do} \\ &\text{remove a node } n \text{ from worklist} \\ &\text{out}_n \coloneqq \vee \left\{ \text{ } in_m \text{ } .m \text{ in succ}(n) \right. \right\} \\ &\text{ } in_n \coloneqq f_n(out_n) \\ &\text{ } if \text{ } in_n \text{ changed then} \\ &\text{ } \text{ worklist } \coloneqq \text{ worklist } \cup \text{ pred}(n) \end{split}
```

Live Variables

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee = \cup$ (order is \subset)
- ⊥ = 6
- O = Ø
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of variables that node kills
 - a is set of variables that node reads

Meaning of Dataflow Results

- Control flow graph and set of variables v in V
- Concept of program state s in ST
- s is a map that stores values of variables v in V
- s[v] is the value of v in state s
- Concept of pair <s,n> program state s at node n
- n executes in s to produce <s',n'>
 - s' stores values of variables after n executes
 - n' is next node to execute

Execution of Program

(program represented as control flow graph)

- Concept of a program execution
- Execution is a sequence (trajectory) of <s,n> pairs
 - <s₀,n₀>; <s₁,n₁>; ...; <s_k,n_k>
 - $\langle s_{i+1,n_{i+1}} \rangle$ generated from $\langle s_{i,n_{i}} \rangle$ by
 - executing n_i in state s_i
 - n_i updates variable values in s_i to produce s_{i+1}
 - \bullet control then flows to n_{i+1}
 - n_{i+1} is next node to execute after n_i

Relating Program Executions to Dataflow Analysis Results

- Meaning of program analysis result is given by an abstraction function AF:ST->P
 - p = AF(s)
 - s in ST is a program state
 - p in P is an element of dataflow lattice P
- Correctness condition: given any program execution $< s_0, n_0 > ; \dots; < s_k, n_k >$ and pair < s, n > where $s = s_i$ and $n = n_i$ for some $0 \le i \le k$ then $AF(s) \le in_n$ where $in_n \text{ is result that program analysis produces}$ at program point before n

Sign Analysis Example

- Sign analysis compute sign of each variable v
- Base Lattice: $P = \text{flat lattice on } \{-,0,+\}$

Actual Lattice

- Actual lattice records a sign for each variable
 - Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$
- Function lattice
 - Elements of lattice are functions (maps) from variables to base sign lattice.
 - For function lattice elements f and on
 - $-f_1 \le f_2 \text{ if } \forall \text{ v in V. } f_1(v) \le f_2(v)$

Interpretation of Lattice Values

- If value of v in lattice is:
 - BOT: no information about sign of v
 - -: variable v is negative
 - 0: variable v is (
 - +: variable v is positive
 - TOP: v may be positive, negative, or zero
- What is abstraction function AF?
 - $AF([v_1,...,v_n]) = [sign(v_1), ..., sign(v_n)]$
 - Where sign(v) = 0 if v = 0, + if v > 0, if v < 0

Operation ⊗ on Lattice

8	BOT	-	0	+	TOP
ВОТ	ВОТ	ВОТ	0	BOT	BOT
-	BOT	+	0	-	TOP
0	0	0	0	0	0
+	BOT	-	0	+	TOP
TOP	BOT	TOP	0	TOP	TOP

Transfer Functions

- If n of the form v = c
 - $-f_n(x) = x[v \rightarrow +]$ if c is positive
 - $f_n(x) = x[v \rightarrow 0] \text{ if c is } 0$
 - $-f_n(x) = x[v \rightarrow -]$ if c is negative
- If n of the form $v_1 = v_2 * v_3$
- $-f_n(x) = x[v_1 \rightarrow x[v_2] \otimes x[v_3]]$
- I = TOP (if variables not initialized)
- $I = [v_1 \rightarrow 0, ..., v_n \rightarrow 0]$ initialized to 0)

(if variables

Example a = 1 $[a \rightarrow +]$ b = -1 $[a \rightarrow +, b \rightarrow TOP]$ c = a*b $[a \rightarrow +, b \rightarrow TOP]c \rightarrow TOP]$

General Sources of Imprecision

- · Abstraction Imprecision
 - Concrete values (integers) abstracted as lattice values (-,0, and +)
 - Lattice values less precise than execution values
 - Abstraction function throws away information
- · Control Flow Imprecision
 - One lattice value for all possible control flow paths
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation v moves up in lattice to combine values from different execution paths
 - Typically if $x \le y$, then x is more precise than y

Why Have Imprecision

- Make analysis tractable
- Unbounded sets of values in execution
 - Typically abstracted by finite set of lattice values
- Execution may visit unbounded set of states
 - Abstracted by computing joins of different paths

Abstraction Function

- AF(s)[v] = sign of v
 - $-AF([a\rightarrow 5, b\rightarrow 0, c\rightarrow -2]) = [a\rightarrow +, b\rightarrow 0, c\rightarrow -]$
- Establishes meaning of the analysis results
 - If analysis says variable has a given sign
 - Always has that sign in actual execution
- Correctness condition:
 - program execution $<\!\!s_{0,}n_0\!\!>;\ldots;<\!\!s_{k,}n_k\!\!>$ and pair $<\!\!s,n\!\!>$
 - where $s = s_i$ and $n = n_i$ for some $0 \le i \le k$
 - $\forall v \text{ in V. } AF(s)[v] \leq in_n[v] \text{ (n is node for s)}$
 - Reflects possibility of imprecision

Correctness Condition

Start with

program execution $\langle s_0, n_0 \rangle$; ...; $\langle s_k, n_k \rangle$ and pair $\langle s, n \rangle$ where $s = s_i$ and $n = n_i$ for some $0 \le i \le k$ then $AF(s) \le in_n$ where $in_n \text{ is result that program analysis produces}$ at program point before n. For sign analysis, AF(s) is a map that gives sign of each variable $v \in V$. $AF(s)[v] \le in_n[v]$

Sign Analysis Soundness

Given

 $\begin{aligned} & program \; execution < s_0, n_0>; \; \dots; < s_k, n_k> \; and \; pair < s, n> \\ & \; where \; s = s_i \; and \; n = n_i \; for \; some \; 0 \leq i \leq k \\ & \; then \; \forall \; v. \; AF(s)[v] \leq in_n[v] \; where \\ & \; in_n \; is \; result \; that \; program \; analysis \; produces \\ & \; at \; program \; point \; before \; n \end{aligned}$ Will prove by induction on i (length of execution that produced $< s_i, n_i >$)

Base Case of Induction

• For base case

-1 - 0, $\Pi - \Pi_0$

 $- \forall v. in_{n0}[v] = TOP$

• Then \forall v. $AF(s)[v] \leq TOP$

Induction Step

- Assume ∀ v. AF(s)[v] ≤ in_n[v] for execution.
 Prove for computations of length k+1

- Case analysis on form of n_k
 - - $-s[v] = c, \quad \text{out}_{nk}[v] = sign(c),$ $-s[x] = s_k[x], \quad \text{out}_{nk}(x) = in_{nk}(x) \text{ for } x \neq v$
 - By induction hypothesis, $\forall x$. AF(s)[x] ≤ out_{nk}[x]
 - out_{nk} \le in_n (because n_k in pred(n) and in_n is least upper bound of set that includes out_{nk})

Augmented Execution States

- Abstraction functions for some analyses require augmented
 - Reaching definitions: states are augmented with definition that created
 - Available expressions: states are augmented with expression for each value

Meet Over Paths Solution

- What solution would be ideal for a forward dataflow analysis problem?
- (note that for all i $n_i \in pred(n_{i+1})$
- The solution must take this path into account:
- So the solution must have the property that $path\ to\ n\} \leq in_n$

and ideally

 $\vee \{f_{p}\left(\bot\right).\ p\ is\ a\ path\ to\ n\} \equiv in_{n}$

Soundness Proof of Analysis Algorithm

- Property to prove:
 - For all paths p to n, $f_p(\bot) \le in_n$
- Proof is by induction on length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma
- Lemma:

Worklist algorithm produces a solution such that $f_n(in_n) = out_n$ if $n \in pred(m)$ then $out_n \le in_m$

Proof

- Base case: p is of length 1
 - Then $p = n_0$ and $f_p(\perp) = \perp = in_{n0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1

Induction Step Proof

- - By induction $(f_{k-1}(\dots f_{n1}(f_{n0}(\bot))\dots)) \le in_{nk}$
 - Apply f_k to both sides, by monotonicity we get $_{l}(\ldots f_{n\,l}(f_{n0}(\bot))\,\ldots))\leq f_{k}(in_{nk})$
 - By lemma, $f_k(in_{nk}) = out_{nk}$
- By lemma, out_{nk} ≤ in_n
- By transitivity, $f_k(f_{k-1}(\dots f_{n1}(f_{n0}(\bot))\dots)) \le in_n$

Distributivity

- Distributivity preserves precision
- If framework is distributive, then worklist algorithm produces the meet over paths solution
 - For all n:
 - $\vee \{f_p(\bot) : p \text{ is a path to } n\} = in_n$

Lack of Distributivity Example

- Constant Calculator
- Flat Lattice on Integers

- Actual lattice records a value for each variable
 - Example element: $[a\rightarrow3, b\rightarrow2, c\rightarrow5]$

Transfer Functions

- If n of the form v = c
 - $-f_{x}(x) = x[y \rightarrow c]$
- If n of the form $v_1 = v_2 + v_3$
 - $f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]]$
- Lack of distributivity
 - Consider transfer function f for c = a + b
 - $f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow TOP, b \rightarrow TOP, c \rightarrow 5]$
 - $-f([a\rightarrow 3,b\rightarrow 2]\vee[a\rightarrow 2,b\rightarrow 3])=f([a\rightarrow TOP,b\rightarrow TOP])=\\[a\rightarrow TOP,b\rightarrow TOP,c\rightarrow TOP]$

Lack of Distributivity Anomaly

How to Make Analysis Distributive

• Keep combinations of values on different paths

Issues

- Basically simulating all combinations of values in all executions
 - Exponential blowup
 - Nontermination because of infinite ascending chains
- Nontermination solution
 - Use widening operator to eliminate blowup (can make it work at granularity of variables)
 - Loses precision in many cases

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders, least upper bound, greatest lower bound, ascending chains
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function AF: S → P
 - For any state s and program point n, $AF(s) \leq i n_n$
 - Meet over all paths solutions, distributivity

For the quiz, you should know:

- How to give transfer functions for simple lattices and nodes
- Abstraction functions
- Meet over paths solution
- Causes of imprecision