6.110 Computer
Language Engineering

April 17, 2024

MIT 6.1100
Foundations of Dataflow Analysis

Martin Rinard
Massachusetts Institute of Technology

Dataflow Analysis

* Compile-Time Reasoning About
* Run-Time Values of Variables or Expressions
» At Different Program Points

— Which assignment statements produced value of variable at this point?

— Which variables contain values that are no longer used after this
program point?

— What 1s the range of possible values of variable at this program point?

Program Representation

* Control Flow Graph
— Nodes N — statements of program
— Edges E — flow of control

 pred(n) = set of all predecessors of n

* succ(n) = set of all successors of n
— Start node n,
— Set of final nodes Ng,

Program Points

One program point before each node
One program point after each node
Join point — point with multiple predecessors

Split point — point with multiple successors

Basic Idea

* Information about program represented using values from
algebraic structure called lattice

* Analysis produces lattice value for each program point

* Two flavors of analysis

— Forward dataflow analysis
— Backward dataflow analysis

Forward Dataflow Analysis

* Analysis propagates values forward through control flow graph with flow
of control

— Each node has a transfer function f
e Input — value at program point before node
e Output — new value at program point after node

— Values flow from program points after predecessor nodes to program
points before successor nodes

— At join points, values are combined using a merge function
* Canonical Example: Reaching Definitions

Backward Datatlow Analysis

* Analysis propagates values backward through control
flow graph against flow of control

— Each node has a transfer function f
* Input — value at program point after node
e Output — new value at program point before node

— Values flow from program points before successor
nodes to program points after predecessor nodes

— At split points, values are combined using a merge
function

— Canonical Example: Live Variables

Summary

« Dataflow analysis computes some information (say, of type 1)
at each statement (or basic block)

 Each statement has a transfer function

« Given what information we have at the program point before, and what
Is at the statement, what information do we have atthe program point

after?

« At each merge points, we combine information from the paths
using a join function

 Lattices are a way to formalize all this and prove that a
dataflow analysis always terminates (assuming some
properties of I, f and V)

Partial Orders

e SetP
 Partial order < such that Vx,y,zeP
—x<X (reflexive)

—x<yandy<ximpliesx=y (asymmetric)
—x<yandy <zimplies x <z (transitive)

» Can use partial order to define
— Upper and lower bounds

— Least upper bound
— Qreatest lower bound

Upper Bounds

o I[f S c P then

— x€P 1s an upper bound of S 1f VyeS. y <x
— x€P 1s the least upper bound of S 1f

X 1s an upper bound of S, and
» x <y for all upper bounds y of S
— V - join, least upper bound, lub, supremum, sup

e v S 1s the least upper bound of S
e X Vv vy 1s the least upper bound of {x,y}

[Lower Bounds

 [f S c P then
— xePi1s alower bound of S if VyeS. x <y

— x€P 1s the greatest lower bound of S 1f
* x 18 a lower bound of S, and

« y <x for all lower bounds y of S

— A - meet, greatest lower bound, glb, infimum, inf
* A S 1s the greatest lower bound of S

* X Ay 1s the greatest lower bound of {x,y}

Covering

¢ x<yifx <y and xzy

* x 1s covered by y (y covers Xx) 1f
— x <y, and
—x<z<yimplies X =z

* Conceptually, y covers x 1f there are no elements between x and
y

Example

« P={000,001, 010,011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)
« x <yif(xbitwise and y) =x

o Hasse Diagram

/% e If y covers x
011 110

e Line from y to x

101
>‘< * y above X 1n diagram

00 100

2

000

[attices

* [f X Ayandx vy exist for all x,yeP,
then P 1s a lattice.

e If AS and vS exist for all S < P,
then P 1s a complete lattice.

 All finite lattices are complete

[attices

If X A yand x v y exist for all x,yeP,
then P 1s a lattice.

If AS and VS exist for all S < P,
then P 1s a complete lattice.

All finite lattices are complete
Example of a lattice that is not complete

— Integers |

— For any x, yel, X v y = max(x,y), X A y = min(X,y)
— But v I and A I do not exist

— [U {+00,—0 } 1s a complete lattice

Top and Bottom

* Greatest element of P (1f 1t exists) 1s top
» Least element of P (if it exists) 1s bottom (L)

Connection Between <, A, and v

* The following 3 properties are equivalent:
— X<y
—XVY=Yy
— XAY=X
« Will prove:
— x<ympliesxvy=yand X Ay=X
— xvy=yimpliesx <y
— X Ay=x1mpliesx <y
* Then by transitivity, can obtain
— XVvy=yimpliessx Ay=X

— XAy=x1mpliessx vy=y

Connecting Lemma Proofs

 Proofof x<ymmpliesxvy=y
— x <y implies y 1s an upper bound of {X,y}.
— Any upper bound z of {X,y} must satisfy y < z.
— So y 1s least upper bound of {x,y} andx vy=y
* Proofof x <y mmpliesx Ay =X
— x <y implies x 1s a lower bound of {x,y}.
— Any lower bound z of {x,y} must satisfy z < x.
— So x 1s greatest lower bound of {X,y} and x Ay =X

Connecting Lemma Proofs

* Proofof x vy=yimpliesx <y
— y 1s an upper bound of {x,y} implies x <y
* Proofof x A y=x1mpliesx <y

— x 1s a lower bound of {x,y} implies x <y

Lattices as Algebraic Structures

e Have defined v and A 1n terms of <

« Will now define < 1n terms of v and A

— Start with v and A as arbitrary algebraic operations that satisty
associative, commutative, idempotence, and absorption laws

— Will define < using v and A
— Will show that < 1s a partial order

 Intuitive concept of v and A as information combination
operators (or, and)

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that

—(xvy)vz=xv(yvz (associativity of v)

—(xXAyY)AZ=XA(YyAZ) (associativity of A)

—XVYy=yVX
—XAY=YAX
—XVX=X
—XAX=X
—XV(EXAY)=X

—XAXVy)=Xx

(commutativity of v)
(commutativity of A)
(idempotence of V)
(idempotence of A)
(absorption of v over A)

(absorption of A over v)

Connection Between A and v

e xvy=yifandonlyif x Ay=x
 Proofofx vy=yimpliesx=xAYy
X=XA(XVY) (by absorption)
=XAY (by assumption)
* Proofofx Ay=x1mpliesy=xvy
y=y V(Y AX) (by absorption)
=yV(XAY) (by commutativity)
=y VX (by assumption)
=XVYy (by commutativity)

Properties of <

 Definex<yifxvy=y
* Proof of transitive property. Must show that
xvy=yandyvz=zimmpliesxvz=z
XV z=XxV(yvVz) (by assumption)
= (x vy)V z (by associativity)
=yVz (by assumption)
=7z (by assumption)

Properties of <

* Proof of asymmetry property. Must show that
xvy=yandyvVv x=x1impliesx=y
x=yVvXx (byassumption)
=xVvy (by commutativity)
=y (by assumption)
* Proof of reflexivity property. Must show that
XV X=X

XV X=X (by idempotence)

Properties of <

* Induced operation < agrees with original definitions of v and A,
1.€.,

—X VY =sup iX,y;
—xAy=1mf {x, y}

Proof of X vy =sup {x, y}

» Consider any upper bound u for x and y.
 Given X vu=uandy Vv u=u, must show XVvy<ule., (X
Vy)vu=u
u=xvu (by assumption)
=x Vv (y Vvu) (by assumption)
=(xVvy)vu (byassociativity)

Proof of X A y =1nf {Xx, y}

* Consider any lower bound 1 for x and y.

« Givenx Al=1and y A I =1, must show
1<xAy e, (xAy)al=1

l=x Al (by assumption)
=X A(y Al (by assumption)
=xAy)Al (by associativity)

Chains

e AsetS1sachammif Vx,yeS.y<xorx<y
P has no infinite chains if every chain in P 1s finite

P satisfies the ascending chain condition if for all sequences x;
<X, < ...there existsn suchthatx, =x_.,,=...

For the quiz, you should know:

 Definition of posets, lattices

* Properties of lattices
* Operations: <, A, V
* Lower/upper bounds, top T, bottom L
* Algebraic properties
* Completeness

Application to Dataflow Analysis

» Dataflow information will be lattice values
— Transfer functions operate on lattice values

— Solution algorithm will generate increasing sequence of values at each
program point
— Ascending chain condition will ensure termination

* Will use v to combine values at control-flow join points

Transfter Functions

* Transfer function f: P—P for each node in control flow graph

* f models effect of the node on the program information

Transfter Functions

Each dataflow analysis problem has a set F of
transfer functions f: P—»P
— Identity function 1€F

— F must be closed under composition:
Vi,geF. the function h = Ax.f(g(x)) €F

— Each f eF must be monotone:
x <y implies {(x) < {(y)

— Sometimes all f €F are distributive:
f(x vy)=1(x) v {(y)

— Distributivity implies monotonicity

Distributivity Implies Monotonicity

* Proof of distributivity implies monotonicity
e Assume f(x v y)=1(x) v {(y)
e Must show: x v y =y implies {(x) v {(y) = {(y)
fly)=1f(xvy) (by assumption)
=1(x) v {(y) (by distributivity)

Putting Pieces Together

* Forward Dataflow Analysis Framework

* Simulates execution of program forward with flow of control

Forward Dataflow Analysis

* Simulates execution of program forward with
flow of control

* For each node n, have
— 1n,, — value at program point before n
— out, — value at program point after n
— f, — transfer function for n (given in,, computes out,)

* Require that solution satisty
— Vn. out, = f,(in,)
— Vn#n,. in,= Vv { out,, . m in pred(n) }
— 1,y =1
— Where I summarizes information at start of program

Dataflow Equations

* Compiler processes program to obtain a set of datatflow
equations

out, :=f (in,)
in, :=v {out_.m inpred(n) }

* Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward
Dataflow Equations

for each n do out, ;=1 (1)
Ny, = I; out,g := £,0(1)
worklist =N - { n, }
while worklist # & do
remove a node n from worklist
in, := v { out, . min pred(n) }
out, :=f (in,)
if out, changed then
worklist := worklist U succ(n)

Correctness Argument

Why result satisfies dataflow equations
Whenever process a node n, set out, := £ (in,)
Algorithm ensures that out, = f (in,))

Whenever out,, changes, put succ(m) on worklist.
Consider any node n € succ(m). It will eventually come
off worklist and algorithm will set

in, := v { out, . min pred(n) }
to ensure that in, = v { out, . m in pred(n) }
So final solution will satisfy datatflow equations

Termination Argument

 Why does algorithm terminate?

* Sequence of values taken on by 1n, or out, is a chain. If values
stop 1ncreasing, worklist empties and algorithm terminates.

o If lattice has ascending chain property, algorithm terminates
— Algorithm terminates for finite lattices

— For lattices without ascending chain property, use widening operator

Widening Operators

* Detect lattice values that may be part of infinitely ascending chain
 Artificially raise value to least upper bound of chain
« Example:

— Lattice is set of all subsets of integers

— Could be used to collect possible values taken on by variable during
execution of program

— Widening operator might raise all sets of size n or greater to TOP
(likely to be useful for loops)

Reaching Definitions

P = powerset of set of all definitions in program (all subsets of set of
definitions in program)

v =U (order 1s ©)

1=

[=1n,,=_1

F = all functions f of the form f(x) = a U (x-b)
— b 1s set of definitions that node kills

— a1s set of definitions that node generates

General pattern for many transfer functions
— f(x) = GEN U (x-KILL)

Does Reaching Definitions Framework Satisty
Properties?
e C satisfies conditions for <
— X Cc yand y < z implies X < z (transitivity)
— x cyand y < x implies y = x (asymmetry)
— x C x (reflexive)
» | satisfies transfer function conditions
— Ax.D U (x-) = Ax.xeF (identity)
— Will show f(x U y) = {(x) U {(y) (distributivity)

f(x) Ui(y)=(au (x-Db)) U (au(y—Db))
=auU(XxX—-b)u(y—-b)=au((xuUy)—b)
={(xVUy)

Does Reaching Definitions Framework Satisty
Properties?
* What about composition?
— leen fl(X) — al \, (X'bl) and fz(X) — az N\ (X'bz)
— Must show f,(f,(x)) can be expressed as a U (X - b)
f,(H,(x)) =a; U ((a; U (x-by)) - by)
=a; U ((a-by) U ((x-by) - by))

=(a; U (a; - by)) U ((x-by) - by))
=(a; U (a; - by)) U (x-(b, U by))

—Leta=(a; U (a,-by))and b=b, U b,
— Then f;(f,(x)) =a U (x —b)

General Result

All GEN/KILL transtfer function frameworks
satisfy

— Identity
— Daistributivity
— Composition

Properties

Available Expressions

P = powerset of set of all expressions in program (all subsets of
set of expressions)

v = (order 1s D)

1 =P

[=1in,=C

F = all functions f of the form f(x) = a U (x-b)

— b 1s set of expressions that node kills
— a 1s set of expressions that node generates

Another GEN/KILL analysis

Concept of Conservatism

» Reaching definitions use U as join

— Optimizations must take into account all definitions that reach along
ANY path

» Available expressions use M as join
— Optimization requires expression to reach along ALL paths

» Optimizations must conservatively take all possible executions

into account. Structure of analysis varies according to way
analysis used.

Backward Datatlow Analysis

* Simulates execution of program backward against
the flow of control

* For each node n, have
— 1n,, — value at program point before n
— out, — value at program point after n
— f, — transfer function for n (given out,, computes 1n,)

« Require that solution satisfies
— Vn. in, = { (out,)
— Vn ¢ Ng .. out, = v {1n,, . m in succ(n) }
— Vn € Ng,,=out, =0
— Where O summarizes information at end of program

Worklist Algorithm for Solving

Backward Datatlow Equations

for eachn do i, :=f,(1)
for eachn € Ny, do out, := O; 1, :={ (O)
worklist ;== N - N
while worklist # & do

remove a node n from worklist

out, := v {1n, . m in succ(n) }

in, :=f (out,)

if in,, changed then

worklist ;= worklist U pred(n)

[.ive Variables

P = powerset of set of all variables in program (all subsets of set
of variables in program)

v =U (order 1s)

1=

0=9

F = all functions f of the form f(x) = a U (x-b)

— b 1s set of variables that node kills
— a 1s set of variables that node reads

Meaning of Dataflow Results

Control flow graph and set of variables vin V
Concept of program state s in ST
* s 1s a map that stores values of variables vin V
e s[v] 1s the value of v 1n state s

Concept of pair <s,n> - program state s at node n

n executes 1n s to produce <s’,n’>
e s’ stores values of variables after n executes

* n’ 1s next node to execute

Execution of Program
(program represented as control flow graph)

e Concept of a program execution
* Execution 1s a sequence (trajectory) of <s,n> pairs
* <SpNp; <8 N7 .. SS Ny
* <s;;1 0> generated from <s;n> by
e executing n. in state s;
* n, updates variable values 1n s; to produce s,
e control then flows to n,,
* n;,; 1s next node to execute after n;

Relating Program Executions to Datatlow

Analysis Results
* Meaning of program analysis result i1s given by
an abstraction function AF:ST->P
* p=AF(s)
* s1n ST 1s a program state
* pin P 1s an element of dataflow lattice P

» Correctness condition: given any
program execution <SpNp~; ...5 <S Ny~ and pair <s,n>
where s =s; and n =n, for some 0 <1<k
then AF(s) < 1n, where
in, 1s result that program analysis produces
at program point before n

Sign Analysis Example

* Sign analysis - compute sign of each variable v
» Base Lattice: P = flat lattice on {-,0,+}

Actual Lattice

» Actual lattice records a sign for each variable
— Example element: [a—>+, b—0, c—-]

 Function lattice

— Elements of lattice are functions (maps) from variables to base sign
lattice

— For function lattice elements f,and
—f, <t ifVv nV. {i(v)<£i(v)

Interpretation of Lattice Values

 If value of v 1n lattice 1s:
— BOT: no information about sign of v
— -: variable v 1s negative
— 0: variable vis 0
— +: variable v 1s positive
— TOP: v may be positive, negative, or zero

« What 1s abstraction function AF?

— AF([vy,...,vq]) = [sign(vy), ..., sign(vy)]
— Where sign(v) =01fv=0,+1fv>0,-1fv<0

Operation @ on Lattice

® | BOT - 0 + | TOP
BOT | BOT | BOT| 0 |BOT | BOT
- | BOT | + 0 - TOP
0 0 0 0 0 0
+ | BOT | - 0 + | TOP
TOP | BOT | TOP 0 TOP | TOP

Transfter Functions

If n of the form v =_c
— £ (x) = x[v—>+] if ¢ is positive
— 1, (x) =x[v—>0]1fc1s 0

— {,(x) = x[v—-] 1f ¢ 1s negative

If n of the form v, = v,™*v;

— 11(x) = x[vi=X[v,] & x[v;]]

[=TOP (if variables not initialized)

[=[v,—0, ..., v,—0] (if variables
initialized to 0)

Example

a=1
[a—>+]
[a—>+] /\ [a—>+]

b=-1 b=
[a—>+, b—>-] [a—>+, b—>+]
[a—>+, b>TOP]
c=a%*b

[a—>+, b>TOP,c ->TOP]

Imprecision In Example

Abstraction Imprecision:

[a—1] abstracted as [a—>+] a=1
[a—>+/\ N
b=-1 b=
=t b [a—>+, b>+]

[a—>+, b>TOP]

Control Flow Imprecision: c=a*b

[b—>TOP] summarizes results of all executions. In any
execution state s, AF(s)[b]=TOP

General Sources of Imprecision

* Abstraction Imprecision
— Concrete values (integers) abstracted as lattice values (-,0, and +)
— Lattice values less precise than execution values

— Abstraction function throws away information

e Control Flow Imprecision

— One lattice value for all possible control flow paths

— Analysis result has a single lattice value to summarize results of
multiple concrete executions

— Join operation v moves up 1n lattice to combine values from
different execution paths

— Typically 1f x <y, then x 1s more precise than y

Why Have Imprecision

* Make analysis tractable
* Unbounded sets of values 1n execution
— Typically abstracted by finite set of lattice values

» Execution may visit unbounded set of states
— Abstracted by computing joins of different paths

Abstraction Function
 AF(s)[v]=signofv
— AF([a—5, b—0, c—>-2]) = [a—>+, b—>0, c—>-]
 Establishes meaning of the analysis results

— If analysis says variable has a given sign
— Always has that sign 1n actual execution

e Correctness condition:
* program execution <syny>; ...; <s, m> and pair <s,n>
* where s =s; and n =n, for some 0 <1<k

—V vin V. AF(s)[v] £1in.[v] (n is node for s)
— Reflects possibility of imprecision

Correctness Condition

Start with
program execution <sy;ny,>; ...; <s, m> and pair <s,n>
where s =s; and n =n, for some 0 <1<k
then AF(s) < 1n, where
in,, 1s result that program analysis produces

at program point before n
For sign analysis, AF(s) 1s a map that gives sign of each variable v

V v. AF(s)[v] £1n[V]

Sign Analysis Soundness

Given
program execution <syny,>; ...; <s, m> and pair <s,n>
where s =s; and n =n, for some 0 <1<k
then V v. AF(s)[v] < in,[v] where
in,, 1s result that program analysis produces
at program point before n

Will prove by induction on 1
(Iength of execution that produced <s.,n>)

Base Case of Induction

* For base case
—1=0,n=n,
—V v.1n,,[v] =TOP
 Then V v. AF(s)[v] < TOP

Induction Step

e Assume V v. AF(s)[v] < 1n,[v] for executions of length k
* Prove for computations of length k+1
e Proof:
— Given s = s, (state), n = n,,; (node to execute next), and in,
— Find s, (the previous state), n,(the previous node), and 1n,
— By induction hypothesis V v. AF(s)[v] < 1ny[V]
— Case analysis on form of n;
 If n, of the form v = ¢ (other cases are similar), then
—s[v]=c, outy[v]=sign(c),
— s[x] = s, [x], out, . (X) = 1n, (X) for x #v
— By induction hypothesis, Vx. AF(s)[x] < out,;, [X]

— out, <1n, (because n, 1n pred(n) and 1n, 1s least upper
bound of set that includes out,;)

— Therefore Vx. AF(s)[x] £ 1n [x] (transitivity)

Augmented Execution States

* Abstraction functions for some analyses require augmented
execution states

— Reaching definitions: states are augmented with definition that created
each value

— Available expressions: states are augmented with expression for each
value

Meet Over Paths Solution

What solution would be 1deal for a forward dataflow analysis problem?
Consider a path p =n,, n;, ..., n,, n to a node n (note that for all 1
n; € pred(n;.))
The solution must take this path into account:

£, (L) = Gudfae1 (- £ (o L)) -.)) S1my,

So the solution must have the property that vit, (L) .pis a
path ton} <in,

and 1deally
vit, (L) . p1s apathton} =in,

Soundness Proof of Analysis Algorithm

* Property to prove:
For all paths p ton, f, (1) <in,
* Proof 1s by induction on length of p

— Uses monotonicity of transfer functions
— Uses following lemma

 Lemma:
Worklist algorithm produces a solution such that
f (in,) = out,,
if n € pred(m) then out, <in

Proof

* Base case: p 1s of length 1
— Then p=nyand f,(L) = L =1n,,
 Induction step:

— Assume theorem for all paths of length k
— Show for an arbitrary path p of length k+1

Induction Step Proot

* P=ng, ..., N, N
e Must show f (fi_;(...1 ;(f,o(L)) ...)) <1in,

— By induction (f_;(...1,;(f,o(L)) ...)) <1y

— Apply f; to both sides, by monotonicity we get f (f,..

(A (Bp(L) -.)) < fi(ing)

— By lemma, f(in,) = out

— By lemma, out, < 1in,

— By transitivity, f(fi_(...f,;(f;o(L)) ...)) <in,

Distributivity

 Distributivity preserves precision

 If framework 1s distributive, then worklist algorithm produces
the meet over paths solution

— For all n:

vit, (L) . p1s apathton} =1n,

Lack of Distributivity Example

 Constant Calculator
 Flat Lattice on Integers

e Actual lattice records a value for each variable
— Example element: [a—3, b—>2, c—35]

Transfter Functions

* Ifn of the form v=c
— 1.(x) = x[v—oc]
* [fn of the form v, = v,+v;
— 11(x) = xX[vi=X[V5] + x[v3]]
* Lack of distributivity

— Consider transfer function fforc=a+b

— f([a—3, b—>2]) v {([a—>2, b—>3]) = [a>TOP, b—>TOP, c—5]

— f([a—3, b—>2]v[a—>2, b—>3]) = {([a>TOP, b>TOP]) =
[a—>TOP, b>TOP, c—>TOP]

Lack of Distributivity Anomaly
T

a=2 a=23
b=3 b=2
[a—>2, b—3] [a—>3, b—>2]

[a—>TOP, b—>TOP] . ..
Lack of Distributivity Imprecision:

c=atb [a—>TOP, b—>TOP, c—5] more precise
[a—>TOP, b>TOP, c ->TOP]

What 1s the meet over all paths solution?

How to Make Analysis Distributive

« Keep combinations of values on different paths

T

a=2 a=3
b=3 b=2
{[a—>2, b—>3]} {[a—>3, b—>2]}

{[a—>2, b—>3], [a—3, b—>2]}
c=atb

{[a—>2, b—>3,c—>35], [a—>3, b—>2,c—>5]}

Issues

« Basically simulating all combinations of values
in all executions
— Exponential blowup
— Nontermination because of infinite ascending chains

e Nontermination solution

— Use widening operator to eliminate blowup
(can make 1t work at granularity of variables)

— Loses precision 1n many cases

Multiple Fixed Points

« Dataflow analysis generates least fixed point
* May be multiple fixed points

» Available expressions example

a=x-ty a=x-ty

Summary

» Formal dataflow analysis framework

— Lattices, partial orders, least upper bound, greatest lower bound,
ascending chains

— Transfer functions, joins and splits
— Dataflow equations and fixed point solutions

e Connection with program
— Abstraction function AF: S — P
— For any state s and program point n, AF(s) <1n,
— Meet over all paths solutions, distributivity

For the quiz, you should know:

* How to give transfer functions for simple lattices
and nodes

* Abstraction functions
* Meet over paths solution
» Causes of imprecision

